2
cos (x)
-----------
2
1 - sin (x)
/ 2 \ d | cos (x) | --|-----------| dx| 2 | \1 - sin (x)/
Apply the quotient rule, which is:
and .
To find :
Let .
Apply the power rule: goes to
Then, apply the chain rule. Multiply by :
The derivative of cosine is negative sine:
The result of the chain rule is:
To find :
Differentiate term by term:
The derivative of the constant is zero.
The derivative of a constant times a function is the constant times the derivative of the function.
Let .
Apply the power rule: goes to
Then, apply the chain rule. Multiply by :
The derivative of sine is cosine:
The result of the chain rule is:
So, the result is:
The result is:
Now plug in to the quotient rule:
Now simplify:
The answer is:
3
2*cos(x)*sin(x) 2*cos (x)*sin(x)
- --------------- + ----------------
2 2
1 - sin (x) / 2 \
\1 - sin (x)/
/ / 2 2 \ \
| 2 | 2 2 4*cos (x)*sin (x)| |
| cos (x)*|sin (x) - cos (x) + -----------------| |
| | 2 | 2 2 |
| 2 2 \ -1 + sin (x) / 4*cos (x)*sin (x)|
-2*|sin (x) - cos (x) + ----------------------------------------------- + -----------------|
| 2 2 |
\ -1 + sin (x) -1 + sin (x) /
--------------------------------------------------------------------------------------------
2
-1 + sin (x)
/ / 2 2 2 2 \\
| / 2 2 \ 2 | 3*sin (x) 3*cos (x) 6*cos (x)*sin (x)||
| | 2 2 4*cos (x)*sin (x)| 2*cos (x)*|1 - ------------ + ------------ - -----------------||
| 3*|sin (x) - cos (x) + -----------------| | 2 2 2 ||
| / 2 2 \ | 2 | | -1 + sin (x) -1 + sin (x) / 2 \ ||
| 3*\sin (x) - cos (x)/ \ -1 + sin (x) / \ \-1 + sin (x)/ /|
4*|-2 + --------------------- + ----------------------------------------- - ---------------------------------------------------------------|*cos(x)*sin(x)
| 2 2 2 |
\ -1 + sin (x) -1 + sin (x) -1 + sin (x) /
----------------------------------------------------------------------------------------------------------------------------------------------------------
2
-1 + sin (x)