2 cos (x) ----------- 2 1 - sin (x)
/ 2 \ d | cos (x) | --|-----------| dx| 2 | \1 - sin (x)/
Apply the quotient rule, which is:
and .
To find :
Let .
Apply the power rule: goes to
Then, apply the chain rule. Multiply by :
The derivative of cosine is negative sine:
The result of the chain rule is:
To find :
Differentiate term by term:
The derivative of the constant is zero.
The derivative of a constant times a function is the constant times the derivative of the function.
Let .
Apply the power rule: goes to
Then, apply the chain rule. Multiply by :
The derivative of sine is cosine:
The result of the chain rule is:
So, the result is:
The result is:
Now plug in to the quotient rule:
Now simplify:
The answer is:
3 2*cos(x)*sin(x) 2*cos (x)*sin(x) - --------------- + ---------------- 2 2 1 - sin (x) / 2 \ \1 - sin (x)/
/ / 2 2 \ \ | 2 | 2 2 4*cos (x)*sin (x)| | | cos (x)*|sin (x) - cos (x) + -----------------| | | | 2 | 2 2 | | 2 2 \ -1 + sin (x) / 4*cos (x)*sin (x)| -2*|sin (x) - cos (x) + ----------------------------------------------- + -----------------| | 2 2 | \ -1 + sin (x) -1 + sin (x) / -------------------------------------------------------------------------------------------- 2 -1 + sin (x)
/ / 2 2 2 2 \\ | / 2 2 \ 2 | 3*sin (x) 3*cos (x) 6*cos (x)*sin (x)|| | | 2 2 4*cos (x)*sin (x)| 2*cos (x)*|1 - ------------ + ------------ - -----------------|| | 3*|sin (x) - cos (x) + -----------------| | 2 2 2 || | / 2 2 \ | 2 | | -1 + sin (x) -1 + sin (x) / 2 \ || | 3*\sin (x) - cos (x)/ \ -1 + sin (x) / \ \-1 + sin (x)/ /| 4*|-2 + --------------------- + ----------------------------------------- - ---------------------------------------------------------------|*cos(x)*sin(x) | 2 2 2 | \ -1 + sin (x) -1 + sin (x) -1 + sin (x) / ---------------------------------------------------------------------------------------------------------------------------------------------------------- 2 -1 + sin (x)