Mister Exam

Derivative of cos^22t

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
   22   
cos  (t)
$$\cos^{22}{\left(t \right)}$$
d /   22   \
--\cos  (t)/
dt          
$$\frac{d}{d t} \cos^{22}{\left(t \right)}$$
Detail solution
  1. Let .

  2. Apply the power rule: goes to

  3. Then, apply the chain rule. Multiply by :

    1. The derivative of cosine is negative sine:

    The result of the chain rule is:


The answer is:

The graph
The first derivative [src]
       21          
-22*cos  (t)*sin(t)
$$- 22 \sin{\left(t \right)} \cos^{21}{\left(t \right)}$$
The second derivative [src]
      20    /     2            2   \
22*cos  (t)*\- cos (t) + 21*sin (t)/
$$22 \cdot \left(21 \sin^{2}{\left(t \right)} - \cos^{2}{\left(t \right)}\right) \cos^{20}{\left(t \right)}$$
The third derivative [src]
      19    /         2            2   \       
88*cos  (t)*\- 105*sin (t) + 16*cos (t)/*sin(t)
$$88 \left(- 105 \sin^{2}{\left(t \right)} + 16 \cos^{2}{\left(t \right)}\right) \sin{\left(t \right)} \cos^{19}{\left(t \right)}$$
The graph
Derivative of cos^22t