Mister Exam

Other calculators


cossin^2(x)

Derivative of cossin^2(x)

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
   2        
cos (sin(x))
cos2(sin(x))\cos^{2}{\left(\sin{\left(x \right)} \right)}
d /   2        \
--\cos (sin(x))/
dx              
ddxcos2(sin(x))\frac{d}{d x} \cos^{2}{\left(\sin{\left(x \right)} \right)}
Detail solution
  1. Let u=cos(sin(x))u = \cos{\left(\sin{\left(x \right)} \right)}.

  2. Apply the power rule: u2u^{2} goes to 2u2 u

  3. Then, apply the chain rule. Multiply by ddxcos(sin(x))\frac{d}{d x} \cos{\left(\sin{\left(x \right)} \right)}:

    1. Let u=sin(x)u = \sin{\left(x \right)}.

    2. The derivative of cosine is negative sine:

      dducos(u)=sin(u)\frac{d}{d u} \cos{\left(u \right)} = - \sin{\left(u \right)}

    3. Then, apply the chain rule. Multiply by ddxsin(x)\frac{d}{d x} \sin{\left(x \right)}:

      1. The derivative of sine is cosine:

        ddxsin(x)=cos(x)\frac{d}{d x} \sin{\left(x \right)} = \cos{\left(x \right)}

      The result of the chain rule is:

      sin(sin(x))cos(x)- \sin{\left(\sin{\left(x \right)} \right)} \cos{\left(x \right)}

    The result of the chain rule is:

    2sin(sin(x))cos(x)cos(sin(x))- 2 \sin{\left(\sin{\left(x \right)} \right)} \cos{\left(x \right)} \cos{\left(\sin{\left(x \right)} \right)}

  4. Now simplify:

    sin(x2sin(x))2sin(x+2sin(x))2\frac{\sin{\left(x - 2 \sin{\left(x \right)} \right)}}{2} - \frac{\sin{\left(x + 2 \sin{\left(x \right)} \right)}}{2}


The answer is:

sin(x2sin(x))2sin(x+2sin(x))2\frac{\sin{\left(x - 2 \sin{\left(x \right)} \right)}}{2} - \frac{\sin{\left(x + 2 \sin{\left(x \right)} \right)}}{2}

The graph
02468-8-6-4-2-10102-2
The first derivative [src]
-2*cos(x)*cos(sin(x))*sin(sin(x))
2sin(sin(x))cos(x)cos(sin(x))- 2 \sin{\left(\sin{\left(x \right)} \right)} \cos{\left(x \right)} \cos{\left(\sin{\left(x \right)} \right)}
The second derivative [src]
  /   2       2              2       2                                         \
2*\cos (x)*sin (sin(x)) - cos (x)*cos (sin(x)) + cos(sin(x))*sin(x)*sin(sin(x))/
2(sin(x)sin(sin(x))cos(sin(x))+sin2(sin(x))cos2(x)cos2(x)cos2(sin(x)))2 \left(\sin{\left(x \right)} \sin{\left(\sin{\left(x \right)} \right)} \cos{\left(\sin{\left(x \right)} \right)} + \sin^{2}{\left(\sin{\left(x \right)} \right)} \cos^{2}{\left(x \right)} - \cos^{2}{\left(x \right)} \cos^{2}{\left(\sin{\left(x \right)} \right)}\right)
The third derivative [src]
  /                               2                       2                       2                           \       
2*\cos(sin(x))*sin(sin(x)) - 3*sin (sin(x))*sin(x) + 3*cos (sin(x))*sin(x) + 4*cos (x)*cos(sin(x))*sin(sin(x))/*cos(x)
2(3sin(x)sin2(sin(x))+3sin(x)cos2(sin(x))+4sin(sin(x))cos2(x)cos(sin(x))+sin(sin(x))cos(sin(x)))cos(x)2 \left(- 3 \sin{\left(x \right)} \sin^{2}{\left(\sin{\left(x \right)} \right)} + 3 \sin{\left(x \right)} \cos^{2}{\left(\sin{\left(x \right)} \right)} + 4 \sin{\left(\sin{\left(x \right)} \right)} \cos^{2}{\left(x \right)} \cos{\left(\sin{\left(x \right)} \right)} + \sin{\left(\sin{\left(x \right)} \right)} \cos{\left(\sin{\left(x \right)} \right)}\right) \cos{\left(x \right)}
The graph
Derivative of cossin^2(x)