Mister Exam

Other calculators

Derivative of cos((pi*x)/4-(3*pi)/4)

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
   /pi*x   3*pi\
cos|---- - ----|
   \ 4      4  /
$$\cos{\left(\frac{\pi x}{4} - \frac{3 \pi}{4} \right)}$$
cos((pi*x)/4 - 3*pi/4)
Detail solution
  1. Let .

  2. The derivative of cosine is negative sine:

  3. Then, apply the chain rule. Multiply by :

    1. Differentiate term by term:

      1. The derivative of a constant times a function is the constant times the derivative of the function.

        1. The derivative of a constant times a function is the constant times the derivative of the function.

          1. Apply the power rule: goes to

          So, the result is:

        So, the result is:

      2. The derivative of the constant is zero.

      The result is:

    The result of the chain rule is:

  4. Now simplify:


The answer is:

The graph
The first derivative [src]
       /pi*x   3*pi\ 
-pi*sin|---- - ----| 
       \ 4      4  / 
---------------------
          4          
$$- \frac{\pi \sin{\left(\frac{\pi x}{4} - \frac{3 \pi}{4} \right)}}{4}$$
The second derivative [src]
   2    /   /  3   x\\ 
-pi *cos|pi*|- - + -|| 
        \   \  4   4// 
-----------------------
           16          
$$- \frac{\pi^{2} \cos{\left(\pi \left(\frac{x}{4} - \frac{3}{4}\right) \right)}}{16}$$
The third derivative [src]
  3    /   /  3   x\\
pi *sin|pi*|- - + -||
       \   \  4   4//
---------------------
          64         
$$\frac{\pi^{3} \sin{\left(\pi \left(\frac{x}{4} - \frac{3}{4}\right) \right)}}{64}$$