Mister Exam

Derivative of cos(9*x)

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
cos(9*x)
$$\cos{\left(9 x \right)}$$
cos(9*x)
Detail solution
  1. Let .

  2. The derivative of cosine is negative sine:

  3. Then, apply the chain rule. Multiply by :

    1. The derivative of a constant times a function is the constant times the derivative of the function.

      1. Apply the power rule: goes to

      So, the result is:

    The result of the chain rule is:


The answer is:

The graph
The first derivative [src]
-9*sin(9*x)
$$- 9 \sin{\left(9 x \right)}$$
The second derivative [src]
-81*cos(9*x)
$$- 81 \cos{\left(9 x \right)}$$
The third derivative [src]
729*sin(9*x)
$$729 \sin{\left(9 x \right)}$$
The graph
Derivative of cos(9*x)