/log(x)\ cos|------| \ x /
cos(log(x)/x)
Let .
The derivative of cosine is negative sine:
Then, apply the chain rule. Multiply by :
Apply the quotient rule, which is:
and .
To find :
The derivative of is .
To find :
Apply the power rule: goes to
Now plug in to the quotient rule:
The result of the chain rule is:
Now simplify:
The answer is:
/1 log(x)\ /log(x)\ -|-- - ------|*sin|------| | 2 2 | \ x / \x x /
/ 2 /log(x)\\ | (-1 + log(x)) *cos|------|| | /log(x)\ \ x /| -|(-3 + 2*log(x))*sin|------| + --------------------------| \ \ x / x / ------------------------------------------------------------ 3 x
3 /log(x)\ /log(x)\ (-1 + log(x)) *sin|------| 3*(-1 + log(x))*(-3 + 2*log(x))*cos|------| /log(x)\ \ x / \ x / (-11 + 6*log(x))*sin|------| - -------------------------- + ------------------------------------------- \ x / 2 x x ------------------------------------------------------------------------------------------------------- 4 x