Mister Exam

Other calculators

Derivative of cos(lg(4x-5/2x+1))

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
   /   /      5*x    \\
cos|log|4*x - --- + 1||
   \   \       2     //
$$\cos{\left(\log{\left(\left(- \frac{5 x}{2} + 4 x\right) + 1 \right)} \right)}$$
cos(log(4*x - 5*x/2 + 1))
Detail solution
  1. Let .

  2. The derivative of cosine is negative sine:

  3. Then, apply the chain rule. Multiply by :

    1. Let .

    2. The derivative of is .

    3. Then, apply the chain rule. Multiply by :

      1. Differentiate term by term:

        1. Differentiate term by term:

          1. The derivative of a constant times a function is the constant times the derivative of the function.

            1. Apply the power rule: goes to

            So, the result is:

          2. The derivative of a constant times a function is the constant times the derivative of the function.

            1. Apply the power rule: goes to

            So, the result is:

          The result is:

        2. The derivative of the constant is zero.

        The result is:

      The result of the chain rule is:

    The result of the chain rule is:

  4. Now simplify:


The answer is:

The graph
The first derivative [src]
      /   /      5*x    \\
-3*sin|log|4*x - --- + 1||
      \   \       2     //
--------------------------
      /      5*x    \     
    2*|4*x - --- + 1|     
      \       2     /     
$$- \frac{3 \sin{\left(\log{\left(\left(- \frac{5 x}{2} + 4 x\right) + 1 \right)} \right)}}{2 \left(\left(- \frac{5 x}{2} + 4 x\right) + 1\right)}$$
The second derivative [src]
  /     /   /    3*x\\      /   /    3*x\\\
9*|- cos|log|1 + ---|| + sin|log|1 + ---|||
  \     \   \     2 //      \   \     2 ///
-------------------------------------------
                          2                
                 (2 + 3*x)                 
$$\frac{9 \left(\sin{\left(\log{\left(\frac{3 x}{2} + 1 \right)} \right)} - \cos{\left(\log{\left(\frac{3 x}{2} + 1 \right)} \right)}\right)}{\left(3 x + 2\right)^{2}}$$
The third derivative [src]
   /     /   /    3*x\\        /   /    3*x\\\
27*|- sin|log|1 + ---|| + 3*cos|log|1 + ---|||
   \     \   \     2 //        \   \     2 ///
----------------------------------------------
                           3                  
                  (2 + 3*x)                   
$$\frac{27 \left(- \sin{\left(\log{\left(\frac{3 x}{2} + 1 \right)} \right)} + 3 \cos{\left(\log{\left(\frac{3 x}{2} + 1 \right)} \right)}\right)}{\left(3 x + 2\right)^{3}}$$