Mister Exam

Other calculators

Derivative of cos((5*x)^7)

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
   /     7\
cos\(5*x) /
$$\cos{\left(\left(5 x\right)^{7} \right)}$$
cos((5*x)^7)
Detail solution
  1. Let .

  2. The derivative of cosine is negative sine:

  3. Then, apply the chain rule. Multiply by :

    1. Let .

    2. Apply the power rule: goes to

    3. Then, apply the chain rule. Multiply by :

      1. The derivative of a constant times a function is the constant times the derivative of the function.

        1. Apply the power rule: goes to

        So, the result is:

      The result of the chain rule is:

    The result of the chain rule is:

  4. Now simplify:


The answer is:

The graph
The first derivative [src]
         6    /     7\
-546875*x *sin\(5*x) /
$$- 546875 x^{6} \sin{\left(\left(5 x\right)^{7} \right)}$$
The second derivative [src]
         5 /     /     7\           7    /     7\\
-546875*x *\6*sin\(5*x) / + 546875*x *cos\(5*x) //
$$- 546875 x^{5} \left(546875 x^{7} \cos{\left(\left(5 x\right)^{7} \right)} + 6 \sin{\left(\left(5 x\right)^{7} \right)}\right)$$
The third derivative [src]
         4 /       /     7\            7    /     7\                14    /     7\\
2734375*x *\- 6*sin\(5*x) / - 1968750*x *cos\(5*x) / + 59814453125*x  *sin\(5*x) //
$$2734375 x^{4} \left(59814453125 x^{14} \sin{\left(\left(5 x\right)^{7} \right)} - 1968750 x^{7} \cos{\left(\left(5 x\right)^{7} \right)} - 6 \sin{\left(\left(5 x\right)^{7} \right)}\right)$$