Mister Exam

Derivative of cos8x^2

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
   2     
cos (8*x)
cos2(8x)\cos^{2}{\left(8 x \right)}
d /   2     \
--\cos (8*x)/
dx           
ddxcos2(8x)\frac{d}{d x} \cos^{2}{\left(8 x \right)}
Detail solution
  1. Let u=cos(8x)u = \cos{\left(8 x \right)}.

  2. Apply the power rule: u2u^{2} goes to 2u2 u

  3. Then, apply the chain rule. Multiply by ddxcos(8x)\frac{d}{d x} \cos{\left(8 x \right)}:

    1. Let u=8xu = 8 x.

    2. The derivative of cosine is negative sine:

      dducos(u)=sin(u)\frac{d}{d u} \cos{\left(u \right)} = - \sin{\left(u \right)}

    3. Then, apply the chain rule. Multiply by ddx8x\frac{d}{d x} 8 x:

      1. The derivative of a constant times a function is the constant times the derivative of the function.

        1. Apply the power rule: xx goes to 11

        So, the result is: 88

      The result of the chain rule is:

      8sin(8x)- 8 \sin{\left(8 x \right)}

    The result of the chain rule is:

    16sin(8x)cos(8x)- 16 \sin{\left(8 x \right)} \cos{\left(8 x \right)}


The answer is:

16sin(8x)cos(8x)- 16 \sin{\left(8 x \right)} \cos{\left(8 x \right)}

The graph
02468-8-6-4-2-1010-2020
The first derivative [src]
-16*cos(8*x)*sin(8*x)
16sin(8x)cos(8x)- 16 \sin{\left(8 x \right)} \cos{\left(8 x \right)}
The second derivative [src]
    /   2           2     \
128*\sin (8*x) - cos (8*x)/
128(sin2(8x)cos2(8x))128 \left(\sin^{2}{\left(8 x \right)} - \cos^{2}{\left(8 x \right)}\right)
The third derivative [src]
4096*cos(8*x)*sin(8*x)
4096sin(8x)cos(8x)4096 \sin{\left(8 x \right)} \cos{\left(8 x \right)}
The graph
Derivative of cos8x^2