Mister Exam

Derivative of cos(6x-1)

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
cos(6*x - 1)
cos(6x1)\cos{\left(6 x - 1 \right)}
cos(6*x - 1)
Detail solution
  1. Let u=6x1u = 6 x - 1.

  2. The derivative of cosine is negative sine:

    dducos(u)=sin(u)\frac{d}{d u} \cos{\left(u \right)} = - \sin{\left(u \right)}

  3. Then, apply the chain rule. Multiply by ddx(6x1)\frac{d}{d x} \left(6 x - 1\right):

    1. Differentiate 6x16 x - 1 term by term:

      1. The derivative of a constant times a function is the constant times the derivative of the function.

        1. Apply the power rule: xx goes to 11

        So, the result is: 66

      2. The derivative of the constant 1-1 is zero.

      The result is: 66

    The result of the chain rule is:

    6sin(6x1)- 6 \sin{\left(6 x - 1 \right)}

  4. Now simplify:

    6sin(6x1)- 6 \sin{\left(6 x - 1 \right)}


The answer is:

6sin(6x1)- 6 \sin{\left(6 x - 1 \right)}

The graph
02468-8-6-4-2-1010-1010
The first derivative [src]
-6*sin(6*x - 1)
6sin(6x1)- 6 \sin{\left(6 x - 1 \right)}
The second derivative [src]
-36*cos(-1 + 6*x)
36cos(6x1)- 36 \cos{\left(6 x - 1 \right)}
3-я производная [src]
216*sin(-1 + 6*x)
216sin(6x1)216 \sin{\left(6 x - 1 \right)}
The third derivative [src]
216*sin(-1 + 6*x)
216sin(6x1)216 \sin{\left(6 x - 1 \right)}