Mister Exam

Derivative of (cos(5x))^e^x

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
          / x\
          \e /
(cos(5*x))    
$$\cos^{e^{x}}{\left(5 x \right)}$$
  /          / x\\
d |          \e /|
--\(cos(5*x))    /
dx                
$$\frac{d}{d x} \cos^{e^{x}}{\left(5 x \right)}$$
Detail solution
  1. Don't know the steps in finding this derivative.

    But the derivative is


The answer is:

The graph
The first derivative [src]
          / x\ /                      x         \
          \e / | x                 5*e *sin(5*x)|
(cos(5*x))    *|e *log(cos(5*x)) - -------------|
               \                      cos(5*x)  /
$$\left(e^{x} \log{\left(\cos{\left(5 x \right)} \right)} - \frac{5 e^{x} \sin{\left(5 x \right)}}{\cos{\left(5 x \right)}}\right) \cos^{e^{x}}{\left(5 x \right)}$$
The second derivative [src]
          / x\ /                                    2            2                                   \   
          \e / |      /  5*sin(5*x)                \   x   25*sin (5*x)   10*sin(5*x)                |  x
(cos(5*x))    *|-25 + |- ---------- + log(cos(5*x))| *e  - ------------ - ----------- + log(cos(5*x))|*e 
               |      \   cos(5*x)                 /           2            cos(5*x)                 |   
               \                                            cos (5*x)                                /   
$$\left(\left(\log{\left(\cos{\left(5 x \right)} \right)} - \frac{5 \sin{\left(5 x \right)}}{\cos{\left(5 x \right)}}\right)^{2} e^{x} + \log{\left(\cos{\left(5 x \right)} \right)} - \frac{25 \sin^{2}{\left(5 x \right)}}{\cos^{2}{\left(5 x \right)}} - \frac{10 \sin{\left(5 x \right)}}{\cos{\left(5 x \right)}} - 25\right) e^{x} \cos^{e^{x}}{\left(5 x \right)}$$
The third derivative [src]
          / x\ /                                    3                              3              2                                         /                                         2     \                   \   
          \e / |      /  5*sin(5*x)                \   2*x   265*sin(5*x)   250*sin (5*x)   75*sin (5*x)     /  5*sin(5*x)                \ |                     10*sin(5*x)   25*sin (5*x)|  x                |  x
(cos(5*x))    *|-75 + |- ---------- + log(cos(5*x))| *e    - ------------ - ------------- - ------------ - 3*|- ---------- + log(cos(5*x))|*|25 - log(cos(5*x)) + ----------- + ------------|*e  + log(cos(5*x))|*e 
               |      \   cos(5*x)                 /           cos(5*x)          3              2            \   cos(5*x)                 / |                       cos(5*x)        2       |                   |   
               \                                                              cos (5*x)      cos (5*x)                                      \                                    cos (5*x)  /                   /   
$$\left(\left(\log{\left(\cos{\left(5 x \right)} \right)} - \frac{5 \sin{\left(5 x \right)}}{\cos{\left(5 x \right)}}\right)^{3} e^{2 x} - 3 \left(\log{\left(\cos{\left(5 x \right)} \right)} - \frac{5 \sin{\left(5 x \right)}}{\cos{\left(5 x \right)}}\right) \left(- \log{\left(\cos{\left(5 x \right)} \right)} + \frac{25 \sin^{2}{\left(5 x \right)}}{\cos^{2}{\left(5 x \right)}} + \frac{10 \sin{\left(5 x \right)}}{\cos{\left(5 x \right)}} + 25\right) e^{x} + \log{\left(\cos{\left(5 x \right)} \right)} - \frac{250 \sin^{3}{\left(5 x \right)}}{\cos^{3}{\left(5 x \right)}} - \frac{75 \sin^{2}{\left(5 x \right)}}{\cos^{2}{\left(5 x \right)}} - \frac{265 \sin{\left(5 x \right)}}{\cos{\left(5 x \right)}} - 75\right) e^{x} \cos^{e^{x}}{\left(5 x \right)}$$
The graph
Derivative of (cos(5x))^e^x