Mister Exam

Other calculators

Derivative of cos(5x/2)-7x+3

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
   /5*x\          
cos|---| - 7*x + 3
   \ 2 /          
(7x+cos(5x2))+3\left(- 7 x + \cos{\left(\frac{5 x}{2} \right)}\right) + 3
cos((5*x)/2) - 7*x + 3
Detail solution
  1. Differentiate (7x+cos(5x2))+3\left(- 7 x + \cos{\left(\frac{5 x}{2} \right)}\right) + 3 term by term:

    1. Differentiate 7x+cos(5x2)- 7 x + \cos{\left(\frac{5 x}{2} \right)} term by term:

      1. Let u=5x2u = \frac{5 x}{2}.

      2. The derivative of cosine is negative sine:

        dducos(u)=sin(u)\frac{d}{d u} \cos{\left(u \right)} = - \sin{\left(u \right)}

      3. Then, apply the chain rule. Multiply by ddx5x2\frac{d}{d x} \frac{5 x}{2}:

        1. The derivative of a constant times a function is the constant times the derivative of the function.

          1. The derivative of a constant times a function is the constant times the derivative of the function.

            1. Apply the power rule: xx goes to 11

            So, the result is: 55

          So, the result is: 52\frac{5}{2}

        The result of the chain rule is:

        5sin(5x2)2- \frac{5 \sin{\left(\frac{5 x}{2} \right)}}{2}

      4. The derivative of a constant times a function is the constant times the derivative of the function.

        1. Apply the power rule: xx goes to 11

        So, the result is: 7-7

      The result is: 5sin(5x2)27- \frac{5 \sin{\left(\frac{5 x}{2} \right)}}{2} - 7

    2. The derivative of the constant 33 is zero.

    The result is: 5sin(5x2)27- \frac{5 \sin{\left(\frac{5 x}{2} \right)}}{2} - 7

  2. Now simplify:

    5sin(5x2)27- \frac{5 \sin{\left(\frac{5 x}{2} \right)}}{2} - 7


The answer is:

5sin(5x2)27- \frac{5 \sin{\left(\frac{5 x}{2} \right)}}{2} - 7

The graph
02468-8-6-4-2-1010-200200
The first derivative [src]
          /5*x\
     5*sin|---|
          \ 2 /
-7 - ----------
         2     
5sin(5x2)27- \frac{5 \sin{\left(\frac{5 x}{2} \right)}}{2} - 7
The second derivative [src]
       /5*x\
-25*cos|---|
       \ 2 /
------------
     4      
25cos(5x2)4- \frac{25 \cos{\left(\frac{5 x}{2} \right)}}{4}
The third derivative [src]
       /5*x\
125*sin|---|
       \ 2 /
------------
     8      
125sin(5x2)8\frac{125 \sin{\left(\frac{5 x}{2} \right)}}{8}