Mister Exam

Derivative of cos(2x)*exp(2x)

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
          2*x
cos(2*x)*e   
e2xcos(2x)e^{2 x} \cos{\left(2 x \right)}
cos(2*x)*exp(2*x)
Detail solution
  1. Apply the product rule:

    ddxf(x)g(x)=f(x)ddxg(x)+g(x)ddxf(x)\frac{d}{d x} f{\left(x \right)} g{\left(x \right)} = f{\left(x \right)} \frac{d}{d x} g{\left(x \right)} + g{\left(x \right)} \frac{d}{d x} f{\left(x \right)}

    f(x)=cos(2x)f{\left(x \right)} = \cos{\left(2 x \right)}; to find ddxf(x)\frac{d}{d x} f{\left(x \right)}:

    1. Let u=2xu = 2 x.

    2. The derivative of cosine is negative sine:

      dducos(u)=sin(u)\frac{d}{d u} \cos{\left(u \right)} = - \sin{\left(u \right)}

    3. Then, apply the chain rule. Multiply by ddx2x\frac{d}{d x} 2 x:

      1. The derivative of a constant times a function is the constant times the derivative of the function.

        1. Apply the power rule: xx goes to 11

        So, the result is: 22

      The result of the chain rule is:

      2sin(2x)- 2 \sin{\left(2 x \right)}

    g(x)=e2xg{\left(x \right)} = e^{2 x}; to find ddxg(x)\frac{d}{d x} g{\left(x \right)}:

    1. Let u=2xu = 2 x.

    2. The derivative of eue^{u} is itself.

    3. Then, apply the chain rule. Multiply by ddx2x\frac{d}{d x} 2 x:

      1. The derivative of a constant times a function is the constant times the derivative of the function.

        1. Apply the power rule: xx goes to 11

        So, the result is: 22

      The result of the chain rule is:

      2e2x2 e^{2 x}

    The result is: 2e2xsin(2x)+2e2xcos(2x)- 2 e^{2 x} \sin{\left(2 x \right)} + 2 e^{2 x} \cos{\left(2 x \right)}

  2. Now simplify:

    22e2xcos(2x+π4)2 \sqrt{2} e^{2 x} \cos{\left(2 x + \frac{\pi}{4} \right)}


The answer is:

22e2xcos(2x+π4)2 \sqrt{2} e^{2 x} \cos{\left(2 x + \frac{\pi}{4} \right)}

The graph
02468-8-6-4-2-1010-10000000001000000000
The first derivative [src]
     2*x                        2*x
- 2*e   *sin(2*x) + 2*cos(2*x)*e   
2e2xsin(2x)+2e2xcos(2x)- 2 e^{2 x} \sin{\left(2 x \right)} + 2 e^{2 x} \cos{\left(2 x \right)}
The second derivative [src]
    2*x         
-8*e   *sin(2*x)
8e2xsin(2x)- 8 e^{2 x} \sin{\left(2 x \right)}
The third derivative [src]
                           2*x
-16*(cos(2*x) + sin(2*x))*e   
16(sin(2x)+cos(2x))e2x- 16 \left(\sin{\left(2 x \right)} + \cos{\left(2 x \right)}\right) e^{2 x}