The first derivative
[src]
cos(2*x)
-------- - 2*atan(x)*sin(2*x)
2
1 + x
$$- 2 \sin{\left(2 x \right)} \operatorname{atan}{\left(x \right)} + \frac{\cos{\left(2 x \right)}}{x^{2} + 1}$$
The second derivative
[src]
/2*sin(2*x) x*cos(2*x)\
-2*|---------- + 2*atan(x)*cos(2*x) + ----------|
| 2 2 |
| 1 + x / 2\ |
\ \1 + x / /
$$- 2 \left(\frac{x \cos{\left(2 x \right)}}{\left(x^{2} + 1\right)^{2}} + 2 \cos{\left(2 x \right)} \operatorname{atan}{\left(x \right)} + \frac{2 \sin{\left(2 x \right)}}{x^{2} + 1}\right)$$
The third derivative
[src]
/ / 2 \ \
| | 4*x | |
| |-1 + ------|*cos(2*x) |
| | 2| |
| 6*cos(2*x) \ 1 + x / 6*x*sin(2*x)|
2*|- ---------- + 4*atan(x)*sin(2*x) + ---------------------- + ------------|
| 2 2 2 |
| 1 + x / 2\ / 2\ |
\ \1 + x / \1 + x / /
$$2 \cdot \left(\frac{6 x \sin{\left(2 x \right)}}{\left(x^{2} + 1\right)^{2}} + 4 \sin{\left(2 x \right)} \operatorname{atan}{\left(x \right)} - \frac{6 \cos{\left(2 x \right)}}{x^{2} + 1} + \frac{\left(\frac{4 x^{2}}{x^{2} + 1} - 1\right) \cos{\left(2 x \right)}}{\left(x^{2} + 1\right)^{2}}\right)$$