Mister Exam

Derivative of cos2x-3x*arcsinx

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
cos(2*x) - 3*x*asin(x)
$$- 3 x \operatorname{asin}{\left(x \right)} + \cos{\left(2 x \right)}$$
cos(2*x) - 3*x*asin(x)
The graph
The first derivative [src]
                              3*x    
-3*asin(x) - 2*sin(2*x) - -----------
                             ________
                            /      2 
                          \/  1 - x  
$$- \frac{3 x}{\sqrt{1 - x^{2}}} - 2 \sin{\left(2 x \right)} - 3 \operatorname{asin}{\left(x \right)}$$
The second derivative [src]
 /                                  2   \
 |                  6            3*x    |
-|4*cos(2*x) + ----------- + -----------|
 |                ________           3/2|
 |               /      2    /     2\   |
 \             \/  1 - x     \1 - x /   /
$$- (\frac{3 x^{2}}{\left(1 - x^{2}\right)^{\frac{3}{2}}} + 4 \cos{\left(2 x \right)} + \frac{6}{\sqrt{1 - x^{2}}})$$
The third derivative [src]
                                  3   
                 12*x          9*x    
8*sin(2*x) - ----------- - -----------
                     3/2           5/2
             /     2\      /     2\   
             \1 - x /      \1 - x /   
$$- \frac{9 x^{3}}{\left(1 - x^{2}\right)^{\frac{5}{2}}} - \frac{12 x}{\left(1 - x^{2}\right)^{\frac{3}{2}}} + 8 \sin{\left(2 x \right)}$$