25 cos (x) -------- 25 sin (x)
cos(x)^25/sin(x)^25
Apply the quotient rule, which is:
and .
To find :
Let .
Apply the power rule: goes to
Then, apply the chain rule. Multiply by :
The derivative of cosine is negative sine:
The result of the chain rule is:
To find :
Let .
Apply the power rule: goes to
Then, apply the chain rule. Multiply by :
The derivative of sine is cosine:
The result of the chain rule is:
Now plug in to the quotient rule:
Now simplify:
The answer is:
26 24
25*cos (x) 25*cos (x)*sin(x)
- ----------- - ------------------
26 25
sin (x) sin (x)
/ / 2 \\
23 | 2 2 2 | 26*cos (x)||
25*cos (x)*|24*sin (x) + 49*cos (x) + cos (x)*|1 + ----------||
| | 2 ||
\ \ sin (x) //
----------------------------------------------------------------
25
sin (x)
/ / 2 \ \
| 4 | 702*cos (x)| |
| cos (x)*|77 + -----------| |
| / 2 \ | 2 | 2 / 2 2 \|
22 | 2 2 2 | 26*cos (x)| \ sin (x) / 75*cos (x)*\- cos (x) + 24*sin (x)/|
-25*cos (x)*|- 73*cos (x) + 552*sin (x) + 75*cos (x)*|1 + ----------| + -------------------------- + -----------------------------------|
| | 2 | 2 2 |
\ \ sin (x) / sin (x) sin (x) /
------------------------------------------------------------------------------------------------------------------------------------------
24
sin (x)