Mister Exam

Derivative of cos²5x/sin²5x

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
   25   
cos  (x)
--------
   25   
sin  (x)
$$\frac{\cos^{25}{\left(x \right)}}{\sin^{25}{\left(x \right)}}$$
cos(x)^25/sin(x)^25
Detail solution
  1. Apply the quotient rule, which is:

    and .

    To find :

    1. Let .

    2. Apply the power rule: goes to

    3. Then, apply the chain rule. Multiply by :

      1. The derivative of cosine is negative sine:

      The result of the chain rule is:

    To find :

    1. Let .

    2. Apply the power rule: goes to

    3. Then, apply the chain rule. Multiply by :

      1. The derivative of sine is cosine:

      The result of the chain rule is:

    Now plug in to the quotient rule:

  2. Now simplify:


The answer is:

The graph
The first derivative [src]
        26            24          
  25*cos  (x)   25*cos  (x)*sin(x)
- ----------- - ------------------
       26               25        
    sin  (x)         sin  (x)     
$$- \frac{25 \sin{\left(x \right)} \cos^{24}{\left(x \right)}}{\sin^{25}{\left(x \right)}} - \frac{25 \cos^{26}{\left(x \right)}}{\sin^{26}{\left(x \right)}}$$
The second derivative [src]
            /                                  /          2   \\
      23    |      2            2         2    |    26*cos (x)||
25*cos  (x)*|24*sin (x) + 49*cos (x) + cos (x)*|1 + ----------||
            |                                  |        2     ||
            \                                  \     sin (x)  //
----------------------------------------------------------------
                               25                               
                            sin  (x)                            
$$\frac{25 \left(\left(1 + \frac{26 \cos^{2}{\left(x \right)}}{\sin^{2}{\left(x \right)}}\right) \cos^{2}{\left(x \right)} + 24 \sin^{2}{\left(x \right)} + 49 \cos^{2}{\left(x \right)}\right) \cos^{23}{\left(x \right)}}{\sin^{25}{\left(x \right)}}$$
The third derivative [src]
             /                                                                   /            2   \                                      \
             |                                                              4    |     702*cos (x)|                                      |
             |                                                           cos (x)*|77 + -----------|                                      |
             |                                        /          2   \           |          2     |         2    /     2            2   \|
       22    |        2             2            2    |    26*cos (x)|           \       sin (x)  /   75*cos (x)*\- cos (x) + 24*sin (x)/|
-25*cos  (x)*|- 73*cos (x) + 552*sin (x) + 75*cos (x)*|1 + ----------| + -------------------------- + -----------------------------------|
             |                                        |        2     |               2                                 2                 |
             \                                        \     sin (x)  /            sin (x)                           sin (x)              /
------------------------------------------------------------------------------------------------------------------------------------------
                                                                    24                                                                    
                                                                 sin  (x)                                                                 
$$- \frac{25 \left(75 \left(1 + \frac{26 \cos^{2}{\left(x \right)}}{\sin^{2}{\left(x \right)}}\right) \cos^{2}{\left(x \right)} + \frac{\left(77 + \frac{702 \cos^{2}{\left(x \right)}}{\sin^{2}{\left(x \right)}}\right) \cos^{4}{\left(x \right)}}{\sin^{2}{\left(x \right)}} + \frac{75 \left(24 \sin^{2}{\left(x \right)} - \cos^{2}{\left(x \right)}\right) \cos^{2}{\left(x \right)}}{\sin^{2}{\left(x \right)}} + 552 \sin^{2}{\left(x \right)} - 73 \cos^{2}{\left(x \right)}\right) \cos^{22}{\left(x \right)}}{\sin^{24}{\left(x \right)}}$$