25 cos (x) -------- 25 sin (x)
cos(x)^25/sin(x)^25
Apply the quotient rule, which is:
and .
To find :
Let .
Apply the power rule: goes to
Then, apply the chain rule. Multiply by :
The derivative of cosine is negative sine:
The result of the chain rule is:
To find :
Let .
Apply the power rule: goes to
Then, apply the chain rule. Multiply by :
The derivative of sine is cosine:
The result of the chain rule is:
Now plug in to the quotient rule:
Now simplify:
The answer is:
26 24 25*cos (x) 25*cos (x)*sin(x) - ----------- - ------------------ 26 25 sin (x) sin (x)
/ / 2 \\ 23 | 2 2 2 | 26*cos (x)|| 25*cos (x)*|24*sin (x) + 49*cos (x) + cos (x)*|1 + ----------|| | | 2 || \ \ sin (x) // ---------------------------------------------------------------- 25 sin (x)
/ / 2 \ \ | 4 | 702*cos (x)| | | cos (x)*|77 + -----------| | | / 2 \ | 2 | 2 / 2 2 \| 22 | 2 2 2 | 26*cos (x)| \ sin (x) / 75*cos (x)*\- cos (x) + 24*sin (x)/| -25*cos (x)*|- 73*cos (x) + 552*sin (x) + 75*cos (x)*|1 + ----------| + -------------------------- + -----------------------------------| | | 2 | 2 2 | \ \ sin (x) / sin (x) sin (x) / ------------------------------------------------------------------------------------------------------------------------------------------ 24 sin (x)