Don't know the steps in finding this derivative.
But the derivative is
The answer is:
cosh(x) / cosh(x) \ acot (x)*|log(acot(x))*sinh(x) - ----------------| | / 2\ | \ \1 + x /*acot(x)/
/ 2 \ cosh(x) |/ cosh(x) \ cosh(x) 2*sinh(x) 2*x*cosh(x) | acot (x)*||log(acot(x))*sinh(x) - ----------------| + cosh(x)*log(acot(x)) - ------------------ - ---------------- + -----------------| || / 2\ | 2 / 2\ 2 | |\ \1 + x /*acot(x)/ / 2\ 2 \1 + x /*acot(x) / 2\ | \ \1 + x / *acot (x) \1 + x / *acot(x)/
/ 3 2 \ cosh(x) |/ cosh(x) \ / cosh(x) \ / cosh(x) 2*sinh(x) 2*x*cosh(x) \ 3*cosh(x) 3*sinh(x) 2*cosh(x) 2*cosh(x) 8*x *cosh(x) 6*x*cosh(x) 6*x*sinh(x) | acot (x)*||log(acot(x))*sinh(x) - ----------------| + log(acot(x))*sinh(x) + 3*|log(acot(x))*sinh(x) - ----------------|*|cosh(x)*log(acot(x)) - ------------------ - ---------------- + -----------------| - ---------------- - ------------------ - ------------------ + ----------------- - ----------------- + ------------------ + -----------------| || / 2\ | | / 2\ | | 2 / 2\ 2 | / 2\ 2 3 2 3 3 2 | |\ \1 + x /*acot(x)/ \ \1 + x /*acot(x)/ | / 2\ 2 \1 + x /*acot(x) / 2\ | \1 + x /*acot(x) / 2\ 2 / 2\ 3 / 2\ / 2\ / 2\ 2 / 2\ | \ \ \1 + x / *acot (x) \1 + x / *acot(x)/ \1 + x / *acot (x) \1 + x / *acot (x) \1 + x / *acot(x) \1 + x / *acot(x) \1 + x / *acot (x) \1 + x / *acot(x)/