Mister Exam

Other calculators


arctgx/sqrt(x)/(1+x^2)

Derivative of arctgx/sqrt(x)/(1+x^2)

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
   acot(x)    
--------------
  ___ /     2\
\/ x *\1 + x /
$$\frac{\operatorname{acot}{\left(x \right)}}{\sqrt{x} \left(x^{2} + 1\right)}$$
d /   acot(x)    \
--|--------------|
dx|  ___ /     2\|
  \\/ x *\1 + x //
$$\frac{d}{d x} \frac{\operatorname{acot}{\left(x \right)}}{\sqrt{x} \left(x^{2} + 1\right)}$$
The graph
The first derivative [src]
         1              acot(x)         2*x*acot(x)  
- --------------- - --------------- - ---------------
                2      3/2 /     2\                 2
    ___ /     2\    2*x   *\1 + x /     ___ /     2\ 
  \/ x *\1 + x /                      \/ x *\1 + x / 
$$- \frac{2 x \operatorname{acot}{\left(x \right)}}{\sqrt{x} \left(x^{2} + 1\right)^{2}} - \frac{1}{\sqrt{x} \left(x^{2} + 1\right)^{2}} - \frac{\operatorname{acot}{\left(x \right)}}{2 x^{\frac{3}{2}} \left(x^{2} + 1\right)}$$
The second derivative [src]
                                                           /         2 \        
                                                           |      4*x  |        
                                                         2*|-1 + ------|*acot(x)
                     ___                                   |          2|        
      1          6*\/ x     3*acot(x)     2*acot(x)        \     1 + x /        
------------- + --------- + --------- + -------------- + -----------------------
 3/2 /     2\           2        5/2      ___ /     2\          ___ /     2\    
x   *\1 + x /   /     2\      4*x       \/ x *\1 + x /        \/ x *\1 + x /    
                \1 + x /                                                        
--------------------------------------------------------------------------------
                                          2                                     
                                     1 + x                                      
$$\frac{\frac{2 \cdot \left(\frac{4 x^{2}}{x^{2} + 1} - 1\right) \operatorname{acot}{\left(x \right)}}{\sqrt{x} \left(x^{2} + 1\right)} + \frac{6 \sqrt{x}}{\left(x^{2} + 1\right)^{2}} + \frac{2 \operatorname{acot}{\left(x \right)}}{\sqrt{x} \left(x^{2} + 1\right)} + \frac{1}{x^{\frac{3}{2}} \left(x^{2} + 1\right)} + \frac{3 \operatorname{acot}{\left(x \right)}}{4 x^{\frac{5}{2}}}}{x^{2} + 1}$$
The third derivative [src]
 /                                                               /         2 \                       /         2 \                    /         2 \        \ 
 |                                                               |      4*x  |                       |      4*x  |                ___ |      2*x  |        | 
 |                                                             8*|-1 + ------|                     3*|-1 + ------|*acot(x)   24*\/ x *|-1 + ------|*acot(x)| 
 |                       3/2                                     |          2|                       |          2|                    |          2|        | 
 |       9           12*x              9          15*acot(x)     \     1 + x /      9*acot(x)        \     1 + x /                    \     1 + x /        | 
-|--------------- + --------- + --------------- + ---------- + --------------- + --------------- + ----------------------- + ------------------------------| 
 |              2           3      5/2 /     2\        7/2                   2      3/2 /     2\         3/2 /     2\                          2           | 
 |  ___ /     2\    /     2\    4*x   *\1 + x /     8*x          ___ /     2\    2*x   *\1 + x /        x   *\1 + x /                  /     2\            | 
 \\/ x *\1 + x /    \1 + x /                                   \/ x *\1 + x /                                                          \1 + x /            / 
-------------------------------------------------------------------------------------------------------------------------------------------------------------
                                                                                 2                                                                           
                                                                            1 + x                                                                            
$$- \frac{\frac{24 \sqrt{x} \left(\frac{2 x^{2}}{x^{2} + 1} - 1\right) \operatorname{acot}{\left(x \right)}}{\left(x^{2} + 1\right)^{2}} + \frac{12 x^{\frac{3}{2}}}{\left(x^{2} + 1\right)^{3}} + \frac{8 \cdot \left(\frac{4 x^{2}}{x^{2} + 1} - 1\right)}{\sqrt{x} \left(x^{2} + 1\right)^{2}} + \frac{3 \cdot \left(\frac{4 x^{2}}{x^{2} + 1} - 1\right) \operatorname{acot}{\left(x \right)}}{x^{\frac{3}{2}} \left(x^{2} + 1\right)} + \frac{9}{\sqrt{x} \left(x^{2} + 1\right)^{2}} + \frac{9 \operatorname{acot}{\left(x \right)}}{2 x^{\frac{3}{2}} \left(x^{2} + 1\right)} + \frac{9}{4 x^{\frac{5}{2}} \left(x^{2} + 1\right)} + \frac{15 \operatorname{acot}{\left(x \right)}}{8 x^{\frac{7}{2}}}}{x^{2} + 1}$$
The graph
Derivative of arctgx/sqrt(x)/(1+x^2)