The first derivative
[src]
1 acot(x) 2*x*acot(x)
- --------------- - --------------- - ---------------
2 3/2 / 2\ 2
___ / 2\ 2*x *\1 + x / ___ / 2\
\/ x *\1 + x / \/ x *\1 + x /
$$- \frac{2 x \operatorname{acot}{\left(x \right)}}{\sqrt{x} \left(x^{2} + 1\right)^{2}} - \frac{1}{\sqrt{x} \left(x^{2} + 1\right)^{2}} - \frac{\operatorname{acot}{\left(x \right)}}{2 x^{\frac{3}{2}} \left(x^{2} + 1\right)}$$
The second derivative
[src]
/ 2 \
| 4*x |
2*|-1 + ------|*acot(x)
___ | 2|
1 6*\/ x 3*acot(x) 2*acot(x) \ 1 + x /
------------- + --------- + --------- + -------------- + -----------------------
3/2 / 2\ 2 5/2 ___ / 2\ ___ / 2\
x *\1 + x / / 2\ 4*x \/ x *\1 + x / \/ x *\1 + x /
\1 + x /
--------------------------------------------------------------------------------
2
1 + x
$$\frac{\frac{2 \cdot \left(\frac{4 x^{2}}{x^{2} + 1} - 1\right) \operatorname{acot}{\left(x \right)}}{\sqrt{x} \left(x^{2} + 1\right)} + \frac{6 \sqrt{x}}{\left(x^{2} + 1\right)^{2}} + \frac{2 \operatorname{acot}{\left(x \right)}}{\sqrt{x} \left(x^{2} + 1\right)} + \frac{1}{x^{\frac{3}{2}} \left(x^{2} + 1\right)} + \frac{3 \operatorname{acot}{\left(x \right)}}{4 x^{\frac{5}{2}}}}{x^{2} + 1}$$
The third derivative
[src]
/ / 2 \ / 2 \ / 2 \ \
| | 4*x | | 4*x | ___ | 2*x | |
| 8*|-1 + ------| 3*|-1 + ------|*acot(x) 24*\/ x *|-1 + ------|*acot(x)|
| 3/2 | 2| | 2| | 2| |
| 9 12*x 9 15*acot(x) \ 1 + x / 9*acot(x) \ 1 + x / \ 1 + x / |
-|--------------- + --------- + --------------- + ---------- + --------------- + --------------- + ----------------------- + ------------------------------|
| 2 3 5/2 / 2\ 7/2 2 3/2 / 2\ 3/2 / 2\ 2 |
| ___ / 2\ / 2\ 4*x *\1 + x / 8*x ___ / 2\ 2*x *\1 + x / x *\1 + x / / 2\ |
\\/ x *\1 + x / \1 + x / \/ x *\1 + x / \1 + x / /
-------------------------------------------------------------------------------------------------------------------------------------------------------------
2
1 + x
$$- \frac{\frac{24 \sqrt{x} \left(\frac{2 x^{2}}{x^{2} + 1} - 1\right) \operatorname{acot}{\left(x \right)}}{\left(x^{2} + 1\right)^{2}} + \frac{12 x^{\frac{3}{2}}}{\left(x^{2} + 1\right)^{3}} + \frac{8 \cdot \left(\frac{4 x^{2}}{x^{2} + 1} - 1\right)}{\sqrt{x} \left(x^{2} + 1\right)^{2}} + \frac{3 \cdot \left(\frac{4 x^{2}}{x^{2} + 1} - 1\right) \operatorname{acot}{\left(x \right)}}{x^{\frac{3}{2}} \left(x^{2} + 1\right)} + \frac{9}{\sqrt{x} \left(x^{2} + 1\right)^{2}} + \frac{9 \operatorname{acot}{\left(x \right)}}{2 x^{\frac{3}{2}} \left(x^{2} + 1\right)} + \frac{9}{4 x^{\frac{5}{2}} \left(x^{2} + 1\right)} + \frac{15 \operatorname{acot}{\left(x \right)}}{8 x^{\frac{7}{2}}}}{x^{2} + 1}$$