Mister Exam

Other calculators


arctg(x)^2+arctg^2x

Derivative of arctg(x)^2+arctg^2x

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
    2          2   
atan (x) + atan (x)
$$\operatorname{atan}^{2}{\left(x \right)} + \operatorname{atan}^{2}{\left(x \right)}$$
d /    2          2   \
--\atan (x) + atan (x)/
dx                     
$$\frac{d}{d x} \left(\operatorname{atan}^{2}{\left(x \right)} + \operatorname{atan}^{2}{\left(x \right)}\right)$$
The graph
The first derivative [src]
4*atan(x)
---------
       2 
  1 + x  
$$\frac{4 \operatorname{atan}{\left(x \right)}}{x^{2} + 1}$$
The second derivative [src]
4*(1 - 2*x*atan(x))
-------------------
             2     
     /     2\      
     \1 + x /      
$$\frac{4 \left(- 2 x \operatorname{atan}{\left(x \right)} + 1\right)}{\left(x^{2} + 1\right)^{2}}$$
The third derivative [src]
  /                       2        \
  |            3*x     4*x *atan(x)|
8*|-atan(x) - ------ + ------------|
  |                2           2   |
  \           1 + x       1 + x    /
------------------------------------
                     2              
             /     2\               
             \1 + x /               
$$\frac{8 \cdot \left(\frac{4 x^{2} \operatorname{atan}{\left(x \right)}}{x^{2} + 1} - \operatorname{atan}{\left(x \right)} - \frac{3 x}{x^{2} + 1}\right)}{\left(x^{2} + 1\right)^{2}}$$
The graph
Derivative of arctg(x)^2+arctg^2x