The first derivative
[src]
2 /x\
3 6*log (2*x + 3)*atan|-|
log (2*x + 3) \3/
------------- + -----------------------
/ 2\ 2*x + 3
| x |
3*|1 + --|
\ 9 /
$$\frac{\log{\left(2 x + 3 \right)}^{3}}{3 \left(\frac{x^{2}}{9} + 1\right)} + \frac{6 \log{\left(2 x + 3 \right)}^{2} \operatorname{atan}{\left(\frac{x}{3} \right)}}{2 x + 3}$$
The second derivative
[src]
/ /x\ \
| 2 2*(-2 + log(3 + 2*x))*atan|-| |
| x*log (3 + 2*x) \3/ 6*log(3 + 2*x) |
6*|- --------------- - ----------------------------- + ------------------|*log(3 + 2*x)
| 2 2 / 2\|
| / 2\ (3 + 2*x) (3 + 2*x)*\9 + x /|
\ \9 + x / /
$$6 \left(- \frac{x \log{\left(2 x + 3 \right)}^{2}}{\left(x^{2} + 9\right)^{2}} + \frac{6 \log{\left(2 x + 3 \right)}}{\left(2 x + 3\right) \left(x^{2} + 9\right)} - \frac{2 \left(\log{\left(2 x + 3 \right)} - 2\right) \operatorname{atan}{\left(\frac{x}{3} \right)}}{\left(2 x + 3\right)^{2}}\right) \log{\left(2 x + 3 \right)}$$
The third derivative
[src]
/ / 2 \ \
| 3 | 4*x | |
|log (3 + 2*x)*|-1 + ------| / 2 \ /x\ |
| | 2| 8*\1 + log (3 + 2*x) - 3*log(3 + 2*x)/*atan|-| 2 |
| \ 9 + x / \3/ 18*x*log (3 + 2*x) 18*(-2 + log(3 + 2*x))*log(3 + 2*x)|
6*|--------------------------- + ---------------------------------------------- - ------------------- - -----------------------------------|
| 2 3 2 2 / 2\ |
| / 2\ (3 + 2*x) / 2\ (3 + 2*x) *\9 + x / |
\ \9 + x / (3 + 2*x)*\9 + x / /
$$6 \left(- \frac{18 x \log{\left(2 x + 3 \right)}^{2}}{\left(2 x + 3\right) \left(x^{2} + 9\right)^{2}} + \frac{\left(\frac{4 x^{2}}{x^{2} + 9} - 1\right) \log{\left(2 x + 3 \right)}^{3}}{\left(x^{2} + 9\right)^{2}} - \frac{18 \left(\log{\left(2 x + 3 \right)} - 2\right) \log{\left(2 x + 3 \right)}}{\left(2 x + 3\right)^{2} \left(x^{2} + 9\right)} + \frac{8 \left(\log{\left(2 x + 3 \right)}^{2} - 3 \log{\left(2 x + 3 \right)} + 1\right) \operatorname{atan}{\left(\frac{x}{3} \right)}}{\left(2 x + 3\right)^{3}}\right)$$