Mister Exam

Other calculators

Derivative of arctg((2x-1)/(1+x^2))

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
    /2*x - 1\
atan|-------|
    |      2|
    \ 1 + x /
$$\operatorname{atan}{\left(\frac{2 x - 1}{x^{2} + 1} \right)}$$
atan((2*x - 1)/(1 + x^2))
The graph
The first derivative [src]
  2      2*x*(2*x - 1)
------ - -------------
     2             2  
1 + x      /     2\   
           \1 + x /   
----------------------
                 2    
        (2*x - 1)     
    1 + ----------    
                2     
        /     2\      
        \1 + x /      
$$\frac{- \frac{2 x \left(2 x - 1\right)}{\left(x^{2} + 1\right)^{2}} + \frac{2}{x^{2} + 1}}{\frac{\left(2 x - 1\right)^{2}}{\left(x^{2} + 1\right)^{2}} + 1}$$
The second derivative [src]
   /                                                  2           \
   |                               /     x*(-1 + 2*x)\            |
   |                             4*|-1 + ------------| *(-1 + 2*x)|
   |              2                |             2   |            |
   |           4*x *(-1 + 2*x)     \        1 + x    /            |
-2*|-1 + 6*x - --------------- + ---------------------------------|
   |                     2                    /              2\   |
   |                1 + x            /     2\ |    (-1 + 2*x) |   |
   |                                 \1 + x /*|1 + -----------|   |
   |                                          |             2 |   |
   |                                          |     /     2\  |   |
   \                                          \     \1 + x /  /   /
-------------------------------------------------------------------
                            2 /              2\                    
                    /     2\  |    (-1 + 2*x) |                    
                    \1 + x / *|1 + -----------|                    
                              |             2 |                    
                              |     /     2\  |                    
                              \     \1 + x /  /                    
$$- \frac{2 \left(- \frac{4 x^{2} \left(2 x - 1\right)}{x^{2} + 1} + 6 x + \frac{4 \left(2 x - 1\right) \left(\frac{x \left(2 x - 1\right)}{x^{2} + 1} - 1\right)^{2}}{\left(x^{2} + 1\right) \left(\frac{\left(2 x - 1\right)^{2}}{\left(x^{2} + 1\right)^{2}} + 1\right)} - 1\right)}{\left(x^{2} + 1\right)^{2} \left(\frac{\left(2 x - 1\right)^{2}}{\left(x^{2} + 1\right)^{2}} + 1\right)}$$
The third derivative [src]
  /                                                                                                              /              2                       2           2\                                                                \
  |                                                                                    3     /     x*(-1 + 2*x)\ |    (-1 + 2*x)    8*x*(-1 + 2*x)   6*x *(-1 + 2*x) |                                    /              2           \|
  |                                                               2 /     x*(-1 + 2*x)\    2*|-1 + ------------|*|2 - ----------- - -------------- + ----------------|                /     x*(-1 + 2*x)\ |           4*x *(-1 + 2*x)||
  |                                                  16*(-1 + 2*x) *|-1 + ------------|      |             2   | |            2              2                  2    |   4*(-1 + 2*x)*|-1 + ------------|*|-1 + 6*x - ---------------||
  |         2        3                                              |             2   |      \        1 + x    / |       1 + x          1 + x           /     2\     |                |             2   | |                     2    ||
  |     12*x     12*x *(-1 + 2*x)   6*x*(-1 + 2*x)                  \        1 + x    /                          \                                      \1 + x /     /                \        1 + x    / \                1 + x     /|
4*|-3 + ------ - ---------------- + -------------- - ----------------------------------- + --------------------------------------------------------------------------- - -------------------------------------------------------------|
  |          2              2                2                                      2                                        /              2\                                                    2 /              2\                 |
  |     1 + x       /     2\            1 + x                    3 /              2\                                /     2\ |    (-1 + 2*x) |                                            /     2\  |    (-1 + 2*x) |                 |
  |                 \1 + x /                             /     2\  |    (-1 + 2*x) |                                \1 + x /*|1 + -----------|                                            \1 + x / *|1 + -----------|                 |
  |                                                      \1 + x / *|1 + -----------|                                         |             2 |                                                      |             2 |                 |
  |                                                                |             2 |                                         |     /     2\  |                                                      |     /     2\  |                 |
  |                                                                |     /     2\  |                                         \     \1 + x /  /                                                      \     \1 + x /  /                 |
  \                                                                \     \1 + x /  /                                                                                                                                                  /
---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
                                                                                                              2 /              2\                                                                                                      
                                                                                                      /     2\  |    (-1 + 2*x) |                                                                                                      
                                                                                                      \1 + x / *|1 + -----------|                                                                                                      
                                                                                                                |             2 |                                                                                                      
                                                                                                                |     /     2\  |                                                                                                      
                                                                                                                \     \1 + x /  /                                                                                                      
$$\frac{4 \left(- \frac{12 x^{3} \left(2 x - 1\right)}{\left(x^{2} + 1\right)^{2}} + \frac{12 x^{2}}{x^{2} + 1} + \frac{6 x \left(2 x - 1\right)}{x^{2} + 1} - \frac{16 \left(2 x - 1\right)^{2} \left(\frac{x \left(2 x - 1\right)}{x^{2} + 1} - 1\right)^{3}}{\left(x^{2} + 1\right)^{3} \left(\frac{\left(2 x - 1\right)^{2}}{\left(x^{2} + 1\right)^{2}} + 1\right)^{2}} - \frac{4 \left(2 x - 1\right) \left(\frac{x \left(2 x - 1\right)}{x^{2} + 1} - 1\right) \left(- \frac{4 x^{2} \left(2 x - 1\right)}{x^{2} + 1} + 6 x - 1\right)}{\left(x^{2} + 1\right)^{2} \left(\frac{\left(2 x - 1\right)^{2}}{\left(x^{2} + 1\right)^{2}} + 1\right)} - 3 + \frac{2 \left(\frac{x \left(2 x - 1\right)}{x^{2} + 1} - 1\right) \left(\frac{6 x^{2} \left(2 x - 1\right)^{2}}{\left(x^{2} + 1\right)^{2}} - \frac{8 x \left(2 x - 1\right)}{x^{2} + 1} - \frac{\left(2 x - 1\right)^{2}}{x^{2} + 1} + 2\right)}{\left(x^{2} + 1\right) \left(\frac{\left(2 x - 1\right)^{2}}{\left(x^{2} + 1\right)^{2}} + 1\right)}\right)}{\left(x^{2} + 1\right)^{2} \left(\frac{\left(2 x - 1\right)^{2}}{\left(x^{2} + 1\right)^{2}} + 1\right)}$$