Mister Exam

Other calculators

Derivative of arctg(2+(3/(x+0,1*x^2)))

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
    /      3   \
atan|2 + ------|
    |         2|
    |        x |
    |    x + --|
    \        10/
$$\operatorname{atan}{\left(2 + \frac{3}{\frac{x^{2}}{10} + x} \right)}$$
atan(2 + 3/(x + x^2/10))
The first derivative [src]
            /     x\         
          3*|-1 - -|         
            \     5/         
-----------------------------
                            2
/                2\ /     2\ 
|    /      3   \ | |    x | 
|1 + |2 + ------| |*|x + --| 
|    |         2| | \    10/ 
|    |        x | |          
|    |    x + --| |          
\    \        10/ /          
$$\frac{3 \left(- \frac{x}{5} - 1\right)}{\left(\frac{x^{2}}{10} + x\right)^{2} \left(\left(2 + \frac{3}{\frac{x^{2}}{10} + x}\right)^{2} + 1\right)}$$
The second derivative [src]
   /                                 2 /        15    \     \
   |              2       240*(5 + x) *|1 + ----------|     |
   |     4*(5 + x)                     \    x*(10 + x)/     |
60*|-1 + ---------- - --------------------------------------|
   |     x*(10 + x)      /                      2\          |
   |                   2 |      /        15    \ |         2|
   |                  x *|1 + 4*|1 + ----------| |*(10 + x) |
   \                     \      \    x*(10 + x)/ /          /
-------------------------------------------------------------
               /                      2\                     
             2 |      /        15    \ |         2           
            x *|1 + 4*|1 + ----------| |*(10 + x)            
               \      \    x*(10 + x)/ /                     
$$\frac{60 \left(-1 + \frac{4 \left(x + 5\right)^{2}}{x \left(x + 10\right)} - \frac{240 \left(1 + \frac{15}{x \left(x + 10\right)}\right) \left(x + 5\right)^{2}}{x^{2} \left(x + 10\right)^{2} \left(4 \left(1 + \frac{15}{x \left(x + 10\right)}\right)^{2} + 1\right)}\right)}{x^{2} \left(x + 10\right)^{2} \left(4 \left(1 + \frac{15}{x \left(x + 10\right)}\right)^{2} + 1\right)}$$
The third derivative [src]
            /                                                                                                                          2                                                      \
            |                            /        15    \                                                              /        15    \         2                      2 /        15    \     |
            |             2           60*|1 + ----------|                                    2                    9600*|1 + ----------| *(5 + x)            240*(5 + x) *|1 + ----------|     |
            |    2*(5 + x)               \    x*(10 + x)/                         600*(5 + x)                          \    x*(10 + x)/                                  \    x*(10 + x)/     |
720*(5 + x)*|1 - ---------- - ------------------------------------ + -------------------------------------- - --------------------------------------- + --------------------------------------|
            |    x*(10 + x)     /                      2\               /                      2\                                         2                /                      2\          |
            |                   |      /        15    \ |             3 |      /        15    \ |         3      /                      2\               2 |      /        15    \ |         2|
            |                 x*|1 + 4*|1 + ----------| |*(10 + x)   x *|1 + 4*|1 + ----------| |*(10 + x)     3 |      /        15    \ |          3   x *|1 + 4*|1 + ----------| |*(10 + x) |
            |                   \      \    x*(10 + x)/ /               \      \    x*(10 + x)/ /             x *|1 + 4*|1 + ----------| | *(10 + x)       \      \    x*(10 + x)/ /          |
            \                                                                                                    \      \    x*(10 + x)/ /                                                    /
-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
                                                                                /                      2\                                                                                      
                                                                              3 |      /        15    \ |         3                                                                            
                                                                             x *|1 + 4*|1 + ----------| |*(10 + x)                                                                             
                                                                                \      \    x*(10 + x)/ /                                                                                      
$$\frac{720 \left(x + 5\right) \left(1 - \frac{60 \left(1 + \frac{15}{x \left(x + 10\right)}\right)}{x \left(x + 10\right) \left(4 \left(1 + \frac{15}{x \left(x + 10\right)}\right)^{2} + 1\right)} - \frac{2 \left(x + 5\right)^{2}}{x \left(x + 10\right)} + \frac{240 \left(1 + \frac{15}{x \left(x + 10\right)}\right) \left(x + 5\right)^{2}}{x^{2} \left(x + 10\right)^{2} \left(4 \left(1 + \frac{15}{x \left(x + 10\right)}\right)^{2} + 1\right)} - \frac{9600 \left(1 + \frac{15}{x \left(x + 10\right)}\right)^{2} \left(x + 5\right)^{2}}{x^{3} \left(x + 10\right)^{3} \left(4 \left(1 + \frac{15}{x \left(x + 10\right)}\right)^{2} + 1\right)^{2}} + \frac{600 \left(x + 5\right)^{2}}{x^{3} \left(x + 10\right)^{3} \left(4 \left(1 + \frac{15}{x \left(x + 10\right)}\right)^{2} + 1\right)}\right)}{x^{3} \left(x + 10\right)^{3} \left(4 \left(1 + \frac{15}{x \left(x + 10\right)}\right)^{2} + 1\right)}$$