Mister Exam

Derivative of arctg^9x

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
    9   
atan (x)
$$\operatorname{atan}^{9}{\left(x \right)}$$
atan(x)^9
The graph
The first derivative [src]
      8   
9*atan (x)
----------
       2  
  1 + x   
$$\frac{9 \operatorname{atan}^{8}{\left(x \right)}}{x^{2} + 1}$$
The second derivative [src]
       7                   
18*atan (x)*(4 - x*atan(x))
---------------------------
                 2         
         /     2\          
         \1 + x /          
$$\frac{18 \left(- x \operatorname{atan}{\left(x \right)} + 4\right) \operatorname{atan}^{7}{\left(x \right)}}{\left(x^{2} + 1\right)^{2}}$$
The third derivative [src]
            /                                        2     2   \
       6    |      2        28     24*x*atan(x)   4*x *atan (x)|
18*atan (x)*|- atan (x) + ------ - ------------ + -------------|
            |                  2           2               2   |
            \             1 + x       1 + x           1 + x    /
----------------------------------------------------------------
                                   2                            
                           /     2\                             
                           \1 + x /                             
$$\frac{18 \left(\frac{4 x^{2} \operatorname{atan}^{2}{\left(x \right)}}{x^{2} + 1} - \frac{24 x \operatorname{atan}{\left(x \right)}}{x^{2} + 1} - \operatorname{atan}^{2}{\left(x \right)} + \frac{28}{x^{2} + 1}\right) \operatorname{atan}^{6}{\left(x \right)}}{\left(x^{2} + 1\right)^{2}}$$