Mister Exam

Derivative of arctg(sqrt(lnx))

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
    /  ________\
atan\\/ log(x) /
$$\operatorname{atan}{\left(\sqrt{\log{\left(x \right)}} \right)}$$
atan(sqrt(log(x)))
The graph
The first derivative [src]
             1             
---------------------------
                   ________
2*x*(1 + log(x))*\/ log(x) 
$$\frac{1}{2 x \left(\log{\left(x \right)} + 1\right) \sqrt{\log{\left(x \right)}}}$$
The second derivative [src]
 /      1          2     \  
-|2 + ------ + ----------|  
 \    log(x)   1 + log(x)/  
----------------------------
   2                ________
4*x *(1 + log(x))*\/ log(x) 
$$- \frac{2 + \frac{1}{\log{\left(x \right)}} + \frac{2}{\log{\left(x \right)} + 1}}{4 x^{2} \left(\log{\left(x \right)} + 1\right) \sqrt{\log{\left(x \right)}}}$$
The third derivative [src]
          1               3             3           3                 1          
1 + ------------- + -------------- + -------- + --------- + ---------------------
                2   2*(1 + log(x))   4*log(x)        2      2*(1 + log(x))*log(x)
    (1 + log(x))                                8*log (x)                        
---------------------------------------------------------------------------------
                             3                ________                           
                            x *(1 + log(x))*\/ log(x)                            
$$\frac{1 + \frac{3}{4 \log{\left(x \right)}} + \frac{3}{8 \log{\left(x \right)}^{2}} + \frac{3}{2 \left(\log{\left(x \right)} + 1\right)} + \frac{1}{2 \left(\log{\left(x \right)} + 1\right) \log{\left(x \right)}} + \frac{1}{\left(\log{\left(x \right)} + 1\right)^{2}}}{x^{3} \left(\log{\left(x \right)} + 1\right) \sqrt{\log{\left(x \right)}}}$$