The second derivative
[src]
/ 4 \
| 4*(2 + log(x)) |
2*|-1 - log(x) - -----------------|
| 4|
\ 1 + (2 + log(x)) /
-----------------------------------
2 / 4\
x *\1 + (2 + log(x)) /
$$\frac{2 \left(- \log{\left(x \right)} - 1 - \frac{4 \left(\log{\left(x \right)} + 2\right)^{4}}{\left(\log{\left(x \right)} + 2\right)^{4} + 1}\right)}{x^{2} \left(\left(\log{\left(x \right)} + 2\right)^{4} + 1\right)}$$
The third derivative
[src]
/ 3 4 7 \
| 20*(2 + log(x)) 12*(2 + log(x)) 32*(2 + log(x)) |
2*|1 + 2*log(x) - ----------------- + ----------------- + --------------------|
| 4 4 2|
| 1 + (2 + log(x)) 1 + (2 + log(x)) / 4\ |
\ \1 + (2 + log(x)) / /
-------------------------------------------------------------------------------
3 / 4\
x *\1 + (2 + log(x)) /
$$\frac{2 \left(2 \log{\left(x \right)} + 1 + \frac{12 \left(\log{\left(x \right)} + 2\right)^{4}}{\left(\log{\left(x \right)} + 2\right)^{4} + 1} - \frac{20 \left(\log{\left(x \right)} + 2\right)^{3}}{\left(\log{\left(x \right)} + 2\right)^{4} + 1} + \frac{32 \left(\log{\left(x \right)} + 2\right)^{7}}{\left(\left(\log{\left(x \right)} + 2\right)^{4} + 1\right)^{2}}\right)}{x^{3} \left(\left(\log{\left(x \right)} + 2\right)^{4} + 1\right)}$$