Mister Exam

Other calculators

Derivative of arcsec^-1(1/x)

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
    1    
---------
    /  1\
asec|1*-|
    \  x/
$$\frac{1}{\operatorname{asec}{\left(1 \cdot \frac{1}{x} \right)}}$$
d /    1    \
--|---------|
dx|    /  1\|
  |asec|1*-||
  \    \  x//
$$\frac{d}{d x} \frac{1}{\operatorname{asec}{\left(1 \cdot \frac{1}{x} \right)}}$$
The first derivative [src]
          1           
----------------------
   ________           
  /      2      2/  1\
\/  1 - x  *asec |1*-|
                 \  x/
$$\frac{1}{\sqrt{- x^{2} + 1} \operatorname{asec}^{2}{\left(1 \cdot \frac{1}{x} \right)}}$$
The second derivative [src]
     x                2        
----------- - -----------------
        3/2   /      2\     /1\
/     2\      \-1 + x /*asec|-|
\1 - x /                    \x/
-------------------------------
                2/1\           
            asec |-|           
                 \x/           
$$\frac{\frac{x}{\left(- x^{2} + 1\right)^{\frac{3}{2}}} - \frac{2}{\left(x^{2} - 1\right) \operatorname{asec}{\left(\frac{1}{x} \right)}}}{\operatorname{asec}^{2}{\left(\frac{1}{x} \right)}}$$
The third derivative [src]
                     2                                               
     1            3*x                6                    6*x        
----------- + ----------- + -------------------- + ------------------
        3/2           5/2           3/2                     2        
/     2\      /     2\      /     2\        2/1\   /      2\      /1\
\1 - x /      \1 - x /      \1 - x /   *asec |-|   \-1 + x / *asec|-|
                                             \x/                  \x/
---------------------------------------------------------------------
                                   2/1\                              
                               asec |-|                              
                                    \x/                              
$$\frac{\frac{6 x}{\left(x^{2} - 1\right)^{2} \operatorname{asec}{\left(\frac{1}{x} \right)}} + \frac{3 x^{2}}{\left(- x^{2} + 1\right)^{\frac{5}{2}}} + \frac{1}{\left(- x^{2} + 1\right)^{\frac{3}{2}}} + \frac{6}{\left(- x^{2} + 1\right)^{\frac{3}{2}} \operatorname{asec}^{2}{\left(\frac{1}{x} \right)}}}{\operatorname{asec}^{2}{\left(\frac{1}{x} \right)}}$$