Mister Exam

Other calculators


arcctg(3*x^2)

Derivative of arcctg(3*x^2)

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
    /   2\
acot\3*x /
$$\operatorname{acot}{\left(3 x^{2} \right)}$$
d /    /   2\\
--\acot\3*x //
dx            
$$\frac{d}{d x} \operatorname{acot}{\left(3 x^{2} \right)}$$
The graph
The first derivative [src]
  -6*x  
--------
       4
1 + 9*x 
$$- \frac{6 x}{9 x^{4} + 1}$$
The second derivative [src]
  /          4  \
  |      36*x   |
6*|-1 + --------|
  |            4|
  \     1 + 9*x /
-----------------
            4    
     1 + 9*x     
$$\frac{6 \cdot \left(\frac{36 x^{4}}{9 x^{4} + 1} - 1\right)}{9 x^{4} + 1}$$
The third derivative [src]
       /         4  \
     3 |     72*x   |
216*x *|5 - --------|
       |           4|
       \    1 + 9*x /
---------------------
               2     
     /       4\      
     \1 + 9*x /      
$$\frac{216 x^{3} \left(- \frac{72 x^{4}}{9 x^{4} + 1} + 5\right)}{\left(9 x^{4} + 1\right)^{2}}$$
The graph
Derivative of arcctg(3*x^2)