Mister Exam

Derivative of (acot(x))^x

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
    x   
acot (x)
$$\operatorname{acot}^{x}{\left(x \right)}$$
d /    x   \
--\acot (x)/
dx          
$$\frac{d}{d x} \operatorname{acot}^{x}{\left(x \right)}$$
Detail solution
  1. Don't know the steps in finding this derivative.

    But the derivative is


The answer is:

The graph
The first derivative [src]
    x    /         x                       \
acot (x)*|- ---------------- + log(acot(x))|
         |  /     2\                       |
         \  \1 + x /*acot(x)               /
$$\left(- \frac{x}{\left(x^{2} + 1\right) \operatorname{acot}{\left(x \right)}} + \log{\left(\operatorname{acot}{\left(x \right)} \right)}\right) \operatorname{acot}^{x}{\left(x \right)}$$
The second derivative [src]
         /                                              2                    \
         |                                           2*x            x        |
         |                                      2 - ------ + ----------------|
         |                                  2            2   /     2\        |
    x    |/                       x        \        1 + x    \1 + x /*acot(x)|
acot (x)*||-log(acot(x)) + ----------------|  - -----------------------------|
         ||                /     2\        |           /     2\              |
         \\                \1 + x /*acot(x)/           \1 + x /*acot(x)      /
$$\left(\left(\frac{x}{\left(x^{2} + 1\right) \operatorname{acot}{\left(x \right)}} - \log{\left(\operatorname{acot}{\left(x \right)} \right)}\right)^{2} - \frac{- \frac{2 x^{2}}{x^{2} + 1} + \frac{x}{\left(x^{2} + 1\right) \operatorname{acot}{\left(x \right)}} + 2}{\left(x^{2} + 1\right) \operatorname{acot}{\left(x \right)}}\right) \operatorname{acot}^{x}{\left(x \right)}$$
The third derivative [src]
         /                                                             3             2                                                                  /        2                    \\
         |                                                  3       8*x           6*x                 2*x            /                       x        \ |     2*x            x        ||
         |                                        -8*x + ------- + ------ - ---------------- + -----------------   3*|-log(acot(x)) + ----------------|*|2 - ------ + ----------------||
         |                                    3          acot(x)        2   /     2\           /     2\     2        |                /     2\        | |         2   /     2\        ||
    x    |  /                       x        \                     1 + x    \1 + x /*acot(x)   \1 + x /*acot (x)     \                \1 + x /*acot(x)/ \    1 + x    \1 + x /*acot(x)/|
acot (x)*|- |-log(acot(x)) + ----------------|  - -------------------------------------------------------------- + --------------------------------------------------------------------|
         |  |                /     2\        |                                  2                                                            /     2\                                  |
         |  \                \1 + x /*acot(x)/                          /     2\                                                             \1 + x /*acot(x)                          |
         \                                                              \1 + x / *acot(x)                                                                                              /
$$\left(- \left(\frac{x}{\left(x^{2} + 1\right) \operatorname{acot}{\left(x \right)}} - \log{\left(\operatorname{acot}{\left(x \right)} \right)}\right)^{3} + \frac{3 \left(\frac{x}{\left(x^{2} + 1\right) \operatorname{acot}{\left(x \right)}} - \log{\left(\operatorname{acot}{\left(x \right)} \right)}\right) \left(- \frac{2 x^{2}}{x^{2} + 1} + \frac{x}{\left(x^{2} + 1\right) \operatorname{acot}{\left(x \right)}} + 2\right)}{\left(x^{2} + 1\right) \operatorname{acot}{\left(x \right)}} - \frac{\frac{8 x^{3}}{x^{2} + 1} - \frac{6 x^{2}}{\left(x^{2} + 1\right) \operatorname{acot}{\left(x \right)}} - 8 x + \frac{2 x}{\left(x^{2} + 1\right) \operatorname{acot}^{2}{\left(x \right)}} + \frac{3}{\operatorname{acot}{\left(x \right)}}}{\left(x^{2} + 1\right)^{2} \operatorname{acot}{\left(x \right)}}\right) \operatorname{acot}^{x}{\left(x \right)}$$
The graph
Derivative of (acot(x))^x