Mister Exam

Derivative of arcctan(u/2)

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
    /u\
acot|-|
    \2/
$$\operatorname{acot}{\left(\frac{u}{2} \right)}$$
acot(u/2)
The graph
The first derivative [src]
   -1     
----------
  /     2\
  |    u |
2*|1 + --|
  \    4 /
$$- \frac{1}{2 \left(\frac{u^{2}}{4} + 1\right)}$$
The second derivative [src]
     u     
-----------
          2
  /     2\ 
  |    u | 
4*|1 + --| 
  \    4 / 
$$\frac{u}{4 \left(\frac{u^{2}}{4} + 1\right)^{2}}$$
The third derivative [src]
  /        2 \
  |     4*u  |
4*|1 - ------|
  |         2|
  \    4 + u /
--------------
          2   
  /     2\    
  \4 + u /    
$$\frac{4 \left(- \frac{4 u^{2}}{u^{2} + 4} + 1\right)}{\left(u^{2} + 4\right)^{2}}$$