The first derivative
[src]
/ ___\
|\/ 6 |
|-----|
\ 6 /
-------
2
x
1 + --
6
$$\frac{\frac{1}{6} \sqrt{6}}{\frac{x^{2}}{6} + 1}$$
The second derivative
[src]
___
-x*\/ 6
------------
2
/ 2\
| x |
18*|1 + --|
\ 6 /
$$- \frac{\sqrt{6} x}{18 \left(\frac{x^{2}}{6} + 1\right)^{2}}$$
The third derivative
[src]
/ 2 \
___ | 4*x |
2*\/ 6 *|-1 + ------|
| 2|
\ 6 + x /
---------------------
2
/ 2\
\6 + x /
$$\frac{2 \sqrt{6} \left(\frac{4 x^{2}}{x^{2} + 6} - 1\right)}{\left(x^{2} + 6\right)^{2}}$$