The second derivative
[src]
/ 2 1 2 \
-|---- + ------------- + -------------|
| 3/2 / ___\ / ___\|
\x x*\1 + \/ x / x*\2 + \/ x //
----------------------------------------
___________
/ ___ / ___\
16*\/ 1 + \/ x *\2 + \/ x /
$$- \frac{\frac{2}{x \left(\sqrt{x} + 2\right)} + \frac{1}{x \left(\sqrt{x} + 1\right)} + \frac{2}{x^{\frac{3}{2}}}}{16 \sqrt{\sqrt{x} + 1} \left(\sqrt{x} + 2\right)}$$
The third derivative
[src]
12 3 6 8 12 4
---- + ----------------- + -------------- + ----------------- + -------------- + ----------------------------
5/2 2 2 / ___\ 2 2 / ___\ 3/2 / ___\ / ___\
x 3/2 / ___\ x *\1 + \/ x / 3/2 / ___\ x *\2 + \/ x / x *\1 + \/ x /*\2 + \/ x /
x *\1 + \/ x / x *\2 + \/ x /
-------------------------------------------------------------------------------------------------------------
___________
/ ___ / ___\
64*\/ 1 + \/ x *\2 + \/ x /
$$\frac{\frac{12}{x^{2} \left(\sqrt{x} + 2\right)} + \frac{6}{x^{2} \left(\sqrt{x} + 1\right)} + \frac{8}{x^{\frac{3}{2}} \left(\sqrt{x} + 2\right)^{2}} + \frac{4}{x^{\frac{3}{2}} \left(\sqrt{x} + 1\right) \left(\sqrt{x} + 2\right)} + \frac{3}{x^{\frac{3}{2}} \left(\sqrt{x} + 1\right)^{2}} + \frac{12}{x^{\frac{5}{2}}}}{64 \sqrt{\sqrt{x} + 1} \left(\sqrt{x} + 2\right)}$$