Mister Exam

Other calculators


atan(1/(x-1))

Derivative of atan(1/(x-1))

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
    /  1  \
atan|-----|
    \x - 1/
$$\operatorname{atan}{\left(\frac{1}{x - 1} \right)}$$
atan(1/(x - 1))
The graph
The first derivative [src]
          -1           
-----------------------
/       1    \        2
|1 + --------|*(x - 1) 
|           2|         
\    (x - 1) /         
$$- \frac{1}{\left(1 + \frac{1}{\left(x - 1\right)^{2}}\right) \left(x - 1\right)^{2}}$$
The second derivative [src]
  /                1            \
2*|1 - -------------------------|
  |    /        1    \         2|
  |    |1 + ---------|*(-1 + x) |
  |    |            2|          |
  \    \    (-1 + x) /          /
---------------------------------
    /        1    \         3    
    |1 + ---------|*(-1 + x)     
    |            2|              
    \    (-1 + x) /              
$$\frac{2 \left(1 - \frac{1}{\left(1 + \frac{1}{\left(x - 1\right)^{2}}\right) \left(x - 1\right)^{2}}\right)}{\left(1 + \frac{1}{\left(x - 1\right)^{2}}\right) \left(x - 1\right)^{3}}$$
The third derivative [src]
  /                 4                            7            \
2*|-3 - -------------------------- + -------------------------|
  |                    2             /        1    \         2|
  |     /        1    \          4   |1 + ---------|*(-1 + x) |
  |     |1 + ---------| *(-1 + x)    |            2|          |
  |     |            2|              \    (-1 + x) /          |
  \     \    (-1 + x) /                                       /
---------------------------------------------------------------
                   /        1    \         4                   
                   |1 + ---------|*(-1 + x)                    
                   |            2|                             
                   \    (-1 + x) /                             
$$\frac{2 \left(-3 + \frac{7}{\left(1 + \frac{1}{\left(x - 1\right)^{2}}\right) \left(x - 1\right)^{2}} - \frac{4}{\left(1 + \frac{1}{\left(x - 1\right)^{2}}\right)^{2} \left(x - 1\right)^{4}}\right)}{\left(1 + \frac{1}{\left(x - 1\right)^{2}}\right) \left(x - 1\right)^{4}}$$
The graph
Derivative of atan(1/(x-1))