The first derivative
[src]
2*x
2*e
--------
4*x
1 + e
$$\frac{2 e^{2 x}}{e^{4 x} + 1}$$
The second derivative
[src]
/ 4*x \
| 2*e | 2*x
4*|1 - --------|*e
| 4*x|
\ 1 + e /
---------------------
4*x
1 + e
$$\frac{4 \cdot \left(- \frac{2 e^{4 x}}{e^{4 x} + 1} + 1\right) e^{2 x}}{e^{4 x} + 1}$$
The third derivative
[src]
/ 4*x 8*x \
| 8*e 8*e | 2*x
8*|1 - -------- + -----------|*e
| 4*x 2|
| 1 + e / 4*x\ |
\ \1 + e / /
-----------------------------------
4*x
1 + e
$$\frac{8 \cdot \left(\frac{8 e^{8 x}}{\left(e^{4 x} + 1\right)^{2}} - \frac{8 e^{4 x}}{e^{4 x} + 1} + 1\right) e^{2 x}}{e^{4 x} + 1}$$