Mister Exam

Other calculators


atan(e^(2*x))

Derivative of atan(e^(2*x))

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
    / 2*x\
atan\e   /
$$\operatorname{atan}{\left(e^{2 x} \right)}$$
d /    / 2*x\\
--\atan\e   //
dx            
$$\frac{d}{d x} \operatorname{atan}{\left(e^{2 x} \right)}$$
The graph
The first derivative [src]
    2*x 
 2*e    
--------
     4*x
1 + e   
$$\frac{2 e^{2 x}}{e^{4 x} + 1}$$
The second derivative [src]
  /        4*x \     
  |     2*e    |  2*x
4*|1 - --------|*e   
  |         4*x|     
  \    1 + e   /     
---------------------
            4*x      
       1 + e         
$$\frac{4 \cdot \left(- \frac{2 e^{4 x}}{e^{4 x} + 1} + 1\right) e^{2 x}}{e^{4 x} + 1}$$
The third derivative [src]
  /        4*x          8*x  \     
  |     8*e          8*e     |  2*x
8*|1 - -------- + -----------|*e   
  |         4*x             2|     
  |    1 + e      /     4*x\ |     
  \               \1 + e   / /     
-----------------------------------
                   4*x             
              1 + e                
$$\frac{8 \cdot \left(\frac{8 e^{8 x}}{\left(e^{4 x} + 1\right)^{2}} - \frac{8 e^{4 x}}{e^{4 x} + 1} + 1\right) e^{2 x}}{e^{4 x} + 1}$$
The graph
Derivative of atan(e^(2*x))