___
\/ x
(asin(x))
asin(x)^(sqrt(x))
Don't know the steps in finding this derivative.
But the derivative is
Now simplify:
The answer is:
___ / ___ \
\/ x |log(asin(x)) \/ x |
(asin(x)) *|------------ + -------------------|
| ___ ________ |
| 2*\/ x / 2 |
\ \/ 1 - x *asin(x)/
/ 2 \
|/ ___ \ |
||log(asin(x)) 2*\/ x | |
||------------ + -------------------| |
|| ___ ________ | |
___ || \/ x / 2 | ___ 3/2 |
\/ x |\ \/ 1 - x *asin(x)/ log(asin(x)) \/ x 1 x |
(asin(x)) *|------------------------------------- - ------------ + ------------------ + ------------------------- + -------------------|
| 4 3/2 / 2\ 2 ________ 3/2 |
| 4*x \-1 + x /*asin (x) ___ / 2 / 2\ |
\ \/ x *\/ 1 - x *asin(x) \1 - x / *asin(x)/
/ 3 \
|/ ___ \ / ___ \ / ___ 3/2 \ |
||log(asin(x)) 2*\/ x | |log(asin(x)) 2*\/ x | | log(asin(x)) 4*\/ x 4 4*x | |
||------------ + -------------------| 3*|------------ + -------------------|*|- ------------ + ------------------ + ------------------------- + -------------------| |
|| ___ ________ | | ___ ________ | | 3/2 / 2\ 2 ________ 3/2 | |
___ || \/ x / 2 | | \/ x / 2 | | x \-1 + x /*asin (x) ___ / 2 / 2\ | 3/2 ___ 5/2 ___ |
\/ x |\ \/ 1 - x *asin(x)/ 3*log(asin(x)) \ \/ 1 - x *asin(x)/ \ \/ x *\/ 1 - x *asin(x) \1 - x / *asin(x)/ 3*x 2*\/ x 3*x 3 3 5*\/ x |
(asin(x)) *|------------------------------------- + -------------- + ------------------------------------------------------------------------------------------------------------------------------ - ------------------- + -------------------- + ------------------- - -------------------------- + -------------------------- + ---------------------|
| 8 5/2 8 2 3/2 5/2 ________ ___ / 2\ 2 3/2 |
| 8*x / 2\ 2 / 2\ 3 / 2\ 3/2 / 2 2*\/ x *\-1 + x /*asin (x) / 2\ |
\ \-1 + x / *asin (x) \1 - x / *asin (x) \1 - x / *asin(x) 4*x *\/ 1 - x *asin(x) 2*\1 - x / *asin(x)/