Mister Exam

Derivative of arcsinx*lnx

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
asin(x)*log(x)
$$\log{\left(x \right)} \operatorname{asin}{\left(x \right)}$$
asin(x)*log(x)
The graph
The first derivative [src]
asin(x)      log(x)  
------- + -----------
   x         ________
            /      2 
          \/  1 - x  
$$\frac{\log{\left(x \right)}}{\sqrt{1 - x^{2}}} + \frac{\operatorname{asin}{\left(x \right)}}{x}$$
The second derivative [src]
  asin(x)         2           x*log(x) 
- ------- + ------------- + -----------
      2          ________           3/2
     x          /      2    /     2\   
            x*\/  1 - x     \1 - x /   
$$\frac{x \log{\left(x \right)}}{\left(1 - x^{2}\right)^{\frac{3}{2}}} + \frac{2}{x \sqrt{1 - x^{2}}} - \frac{\operatorname{asin}{\left(x \right)}}{x^{2}}$$
The third derivative [src]
                                           /          2 \       
                                           |       3*x  |       
                                           |-1 + -------|*log(x)
                                           |           2|       
     3              3          2*asin(x)   \     -1 + x /       
----------- - -------------- + --------- - ---------------------
        3/2         ________        3                   3/2     
/     2\       2   /      2        x            /     2\        
\1 - x /      x *\/  1 - x                      \1 - x /        
$$- \frac{\left(\frac{3 x^{2}}{x^{2} - 1} - 1\right) \log{\left(x \right)}}{\left(1 - x^{2}\right)^{\frac{3}{2}}} + \frac{3}{\left(1 - x^{2}\right)^{\frac{3}{2}}} - \frac{3}{x^{2} \sqrt{1 - x^{2}}} + \frac{2 \operatorname{asin}{\left(x \right)}}{x^{3}}$$