The first derivative
[src]
1 asin(x - 1)
------------------- - -----------
______________ 2
/ 2 x
x*\/ 1 - (x - 1)
$$- \frac{\operatorname{asin}{\left(x - 1 \right)}}{x^{2}} + \frac{1}{x \sqrt{- \left(x - 1\right)^{2} + 1}}$$
The second derivative
[src]
-1 + x 2 2*asin(-1 + x)
------------------ - -------------------- + --------------
3/2 _______________ 2
/ 2\ / 2 x
\1 - (-1 + x) / x*\/ 1 - (-1 + x)
----------------------------------------------------------
x
$$\frac{\frac{2 \operatorname{asin}{\left(x - 1 \right)}}{x^{2}} + \frac{x - 1}{\left(- \left(x - 1\right)^{2} + 1\right)^{\frac{3}{2}}} - \frac{2}{x \sqrt{- \left(x - 1\right)^{2} + 1}}}{x}$$
The third derivative
[src]
2
3*(-1 + x)
-1 + --------------
2
-1 + (-1 + x) 6*asin(-1 + x) 6 3*(-1 + x)
- ------------------- - -------------- + --------------------- - --------------------
3/2 3 _______________ 3/2
/ 2\ x 2 / 2 / 2\
\1 - (-1 + x) / x *\/ 1 - (-1 + x) x*\1 - (-1 + x) /
-------------------------------------------------------------------------------------
x
$$\frac{- \frac{\frac{3 \left(x - 1\right)^{2}}{\left(x - 1\right)^{2} - 1} - 1}{\left(- \left(x - 1\right)^{2} + 1\right)^{\frac{3}{2}}} - \frac{6 \operatorname{asin}{\left(x - 1 \right)}}{x^{3}} - \frac{3 \left(x - 1\right)}{x \left(- \left(x - 1\right)^{2} + 1\right)^{\frac{3}{2}}} + \frac{6}{x^{2} \sqrt{- \left(x - 1\right)^{2} + 1}}}{x}$$