Mister Exam

Derivative of arcsin(2x)^2

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
    2     
asin (2*x)
$$\operatorname{asin}^{2}{\left(2 x \right)}$$
d /    2     \
--\asin (2*x)/
dx            
$$\frac{d}{d x} \operatorname{asin}^{2}{\left(2 x \right)}$$
The graph
The first derivative [src]
 4*asin(2*x) 
-------------
   __________
  /        2 
\/  1 - 4*x  
$$\frac{4 \operatorname{asin}{\left(2 x \right)}}{\sqrt{- 4 x^{2} + 1}}$$
The second derivative [src]
  /      1       2*x*asin(2*x)\
8*|- --------- + -------------|
  |          2             3/2|
  |  -1 + 4*x    /       2\   |
  \              \1 - 4*x /   /
$$8 \cdot \left(\frac{2 x \operatorname{asin}{\left(2 x \right)}}{\left(- 4 x^{2} + 1\right)^{\frac{3}{2}}} - \frac{1}{4 x^{2} - 1}\right)$$
The third derivative [src]
   /                                   2          \
   |  asin(2*x)         6*x        12*x *asin(2*x)|
16*|------------- + ------------ + ---------------|
   |          3/2              2              5/2 |
   |/       2\      /        2\     /       2\    |
   \\1 - 4*x /      \-1 + 4*x /     \1 - 4*x /    /
$$16 \cdot \left(\frac{6 x}{\left(4 x^{2} - 1\right)^{2}} + \frac{12 x^{2} \operatorname{asin}{\left(2 x \right)}}{\left(- 4 x^{2} + 1\right)^{\frac{5}{2}}} + \frac{\operatorname{asin}{\left(2 x \right)}}{\left(- 4 x^{2} + 1\right)^{\frac{3}{2}}}\right)$$
The graph
Derivative of arcsin(2x)^2