The first derivative
[src]
4*asin(2*x)
-------------
__________
/ 2
\/ 1 - 4*x
$$\frac{4 \operatorname{asin}{\left(2 x \right)}}{\sqrt{- 4 x^{2} + 1}}$$
The second derivative
[src]
/ 1 2*x*asin(2*x)\
8*|- --------- + -------------|
| 2 3/2|
| -1 + 4*x / 2\ |
\ \1 - 4*x / /
$$8 \cdot \left(\frac{2 x \operatorname{asin}{\left(2 x \right)}}{\left(- 4 x^{2} + 1\right)^{\frac{3}{2}}} - \frac{1}{4 x^{2} - 1}\right)$$
The third derivative
[src]
/ 2 \
| asin(2*x) 6*x 12*x *asin(2*x)|
16*|------------- + ------------ + ---------------|
| 3/2 2 5/2 |
|/ 2\ / 2\ / 2\ |
\\1 - 4*x / \-1 + 4*x / \1 - 4*x / /
$$16 \cdot \left(\frac{6 x}{\left(4 x^{2} - 1\right)^{2}} + \frac{12 x^{2} \operatorname{asin}{\left(2 x \right)}}{\left(- 4 x^{2} + 1\right)^{\frac{5}{2}}} + \frac{\operatorname{asin}{\left(2 x \right)}}{\left(- 4 x^{2} + 1\right)^{\frac{3}{2}}}\right)$$