The first derivative
[src]
/ ___\
asin\\/ x /
---------------
___ _______
\/ x *\/ 1 - x
$$\frac{\operatorname{asin}{\left(\sqrt{x} \right)}}{\sqrt{x} \sqrt{- x + 1}}$$
The second derivative
[src]
/ ___\ / ___\
1 asin\\/ x / asin\\/ x /
- ---------- + ---------------- - --------------
x*(-1 + x) ___ 3/2 3/2 _______
\/ x *(1 - x) x *\/ 1 - x
------------------------------------------------
2
$$\frac{- \frac{1}{x \left(x - 1\right)} + \frac{\operatorname{asin}{\left(\sqrt{x} \right)}}{\sqrt{x} \left(- x + 1\right)^{\frac{3}{2}}} - \frac{\operatorname{asin}{\left(\sqrt{x} \right)}}{x^{\frac{3}{2}} \sqrt{- x + 1}}}{2}$$
The third derivative
[src]
/ ___\ / ___\ / ___\
3 3 2*asin\\/ x / 3*asin\\/ x / 3*asin\\/ x /
----------- + ----------- - --------------- + -------------- + ----------------
2 2 3/2 3/2 5/2 _______ ___ 5/2
x*(-1 + x) x *(-1 + x) x *(1 - x) x *\/ 1 - x \/ x *(1 - x)
-------------------------------------------------------------------------------
4
$$\frac{\frac{3}{x \left(x - 1\right)^{2}} + \frac{3}{x^{2} \left(x - 1\right)} + \frac{3 \operatorname{asin}{\left(\sqrt{x} \right)}}{\sqrt{x} \left(- x + 1\right)^{\frac{5}{2}}} - \frac{2 \operatorname{asin}{\left(\sqrt{x} \right)}}{x^{\frac{3}{2}} \left(- x + 1\right)^{\frac{3}{2}}} + \frac{3 \operatorname{asin}{\left(\sqrt{x} \right)}}{x^{\frac{5}{2}} \sqrt{- x + 1}}}{4}$$