Mister Exam

Other calculators


arcsin*sqrt(4-5x)

Derivative of arcsin*sqrt(4-5x)

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
          _________
asin(x)*\/ 4 - 5*x 
$$\sqrt{4 - 5 x} \operatorname{asin}{\left(x \right)}$$
d /          _________\
--\asin(x)*\/ 4 - 5*x /
dx                     
$$\frac{d}{d x} \sqrt{4 - 5 x} \operatorname{asin}{\left(x \right)}$$
The graph
The first derivative [src]
  _________                
\/ 4 - 5*x      5*asin(x)  
----------- - -------------
   ________       _________
  /      2    2*\/ 4 - 5*x 
\/  1 - x                  
$$- \frac{5 \operatorname{asin}{\left(x \right)}}{2 \sqrt{4 - 5 x}} + \frac{\sqrt{4 - 5 x}}{\sqrt{1 - x^{2}}}$$
The second derivative [src]
                                                 _________
             5                25*asin(x)     x*\/ 4 - 5*x 
- ----------------------- - -------------- + -------------
     ________                          3/2            3/2 
    /      2    _________   4*(4 - 5*x)       /     2\    
  \/  1 - x  *\/ 4 - 5*x                      \1 - x /    
$$\frac{x \sqrt{4 - 5 x}}{\left(1 - x^{2}\right)^{\frac{3}{2}}} - \frac{25 \operatorname{asin}{\left(x \right)}}{4 \left(4 - 5 x\right)^{\frac{3}{2}}} - \frac{5}{\sqrt{1 - x^{2}} \sqrt{4 - 5 x}}$$
The third derivative [src]
 /                                                          /          2 \                            \
 |                                                _________ |       3*x  |                            |
 |                                              \/ 4 - 5*x *|-1 + -------|                            |
 |                                                          |           2|                            |
 |            75                375*asin(x)                 \     -1 + x /              15*x          |
-|-------------------------- + -------------- + -------------------------- + -------------------------|
 |     ________                           5/2                  3/2                     3/2            |
 |    /      2           3/2   8*(4 - 5*x)             /     2\                /     2\      _________|
 \4*\/  1 - x  *(4 - 5*x)                              \1 - x /              2*\1 - x /   *\/ 4 - 5*x /
$$- (\frac{15 x}{2 \left(1 - x^{2}\right)^{\frac{3}{2}} \sqrt{4 - 5 x}} + \frac{375 \operatorname{asin}{\left(x \right)}}{8 \left(4 - 5 x\right)^{\frac{5}{2}}} + \frac{75}{4 \sqrt{1 - x^{2}} \left(4 - 5 x\right)^{\frac{3}{2}}} + \frac{\sqrt{4 - 5 x} \left(\frac{3 x^{2}}{x^{2} - 1} - 1\right)}{\left(1 - x^{2}\right)^{\frac{3}{2}}})$$
The graph
Derivative of arcsin*sqrt(4-5x)