The first derivative
[src]
_________
\/ 4 - 5*x 5*asin(x)
----------- - -------------
________ _________
/ 2 2*\/ 4 - 5*x
\/ 1 - x
$$- \frac{5 \operatorname{asin}{\left(x \right)}}{2 \sqrt{4 - 5 x}} + \frac{\sqrt{4 - 5 x}}{\sqrt{1 - x^{2}}}$$
The second derivative
[src]
_________
5 25*asin(x) x*\/ 4 - 5*x
- ----------------------- - -------------- + -------------
________ 3/2 3/2
/ 2 _________ 4*(4 - 5*x) / 2\
\/ 1 - x *\/ 4 - 5*x \1 - x /
$$\frac{x \sqrt{4 - 5 x}}{\left(1 - x^{2}\right)^{\frac{3}{2}}} - \frac{25 \operatorname{asin}{\left(x \right)}}{4 \left(4 - 5 x\right)^{\frac{3}{2}}} - \frac{5}{\sqrt{1 - x^{2}} \sqrt{4 - 5 x}}$$
The third derivative
[src]
/ / 2 \ \
| _________ | 3*x | |
| \/ 4 - 5*x *|-1 + -------| |
| | 2| |
| 75 375*asin(x) \ -1 + x / 15*x |
-|-------------------------- + -------------- + -------------------------- + -------------------------|
| ________ 5/2 3/2 3/2 |
| / 2 3/2 8*(4 - 5*x) / 2\ / 2\ _________|
\4*\/ 1 - x *(4 - 5*x) \1 - x / 2*\1 - x / *\/ 4 - 5*x /
$$- (\frac{15 x}{2 \left(1 - x^{2}\right)^{\frac{3}{2}} \sqrt{4 - 5 x}} + \frac{375 \operatorname{asin}{\left(x \right)}}{8 \left(4 - 5 x\right)^{\frac{5}{2}}} + \frac{75}{4 \sqrt{1 - x^{2}} \left(4 - 5 x\right)^{\frac{3}{2}}} + \frac{\sqrt{4 - 5 x} \left(\frac{3 x^{2}}{x^{2} - 1} - 1\right)}{\left(1 - x^{2}\right)^{\frac{3}{2}}})$$