The second derivative
[src]
/ 2 \
2*\1 + tan (x)/ x*tan(x) / 2 \
--------------- + ----------- + 2*\1 + tan (x)/*asin(x)*tan(x)
________ 3/2
/ 2 / 2\
\/ 1 - x \1 - x /
$$\frac{x \tan{\left(x \right)}}{\left(1 - x^{2}\right)^{\frac{3}{2}}} + 2 \left(\tan^{2}{\left(x \right)} + 1\right) \tan{\left(x \right)} \operatorname{asin}{\left(x \right)} + \frac{2 \left(\tan^{2}{\left(x \right)} + 1\right)}{\sqrt{1 - x^{2}}}$$
The third derivative
[src]
/ 2 \
| 3*x |
|-1 + -------|*tan(x)
| 2| / 2 \ / 2 \
\ -1 + x / / 2 \ / 2 \ 3*x*\1 + tan (x)/ 6*\1 + tan (x)/*tan(x)
- --------------------- + 2*\1 + tan (x)/*\1 + 3*tan (x)/*asin(x) + ----------------- + ----------------------
3/2 3/2 ________
/ 2\ / 2\ / 2
\1 - x / \1 - x / \/ 1 - x
$$\frac{3 x \left(\tan^{2}{\left(x \right)} + 1\right)}{\left(1 - x^{2}\right)^{\frac{3}{2}}} + 2 \left(\tan^{2}{\left(x \right)} + 1\right) \left(3 \tan^{2}{\left(x \right)} + 1\right) \operatorname{asin}{\left(x \right)} + \frac{6 \left(\tan^{2}{\left(x \right)} + 1\right) \tan{\left(x \right)}}{\sqrt{1 - x^{2}}} - \frac{\left(\frac{3 x^{2}}{x^{2} - 1} - 1\right) \tan{\left(x \right)}}{\left(1 - x^{2}\right)^{\frac{3}{2}}}$$