Mister Exam

Other calculators

Derivative of asin(3^x)

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
    / x\
asin\3 /
$$\operatorname{asin}{\left(3^{x} \right)}$$
asin(3^x)
The graph
The first derivative [src]
   x         
  3 *log(3)  
-------------
   __________
  /      2*x 
\/  1 - 3    
$$\frac{3^{x} \log{\left(3 \right)}}{\sqrt{1 - 3^{2 x}}}$$
The second derivative [src]
           /       2*x  \
 x    2    |      3     |
3 *log (3)*|1 + --------|
           |         2*x|
           \    1 - 3   /
-------------------------
         __________      
        /      2*x       
      \/  1 - 3          
$$\frac{3^{x} \left(\frac{3^{2 x}}{1 - 3^{2 x}} + 1\right) \log{\left(3 \right)}^{2}}{\sqrt{1 - 3^{2 x}}}$$
The third derivative [src]
           /          4*x         2*x \
 x    3    |       3*3         4*3    |
3 *log (3)*|1 + ----------- + --------|
           |              2        2*x|
           |    /     2*x\    1 - 3   |
           \    \1 - 3   /            /
---------------------------------------
                __________             
               /      2*x              
             \/  1 - 3                 
$$\frac{3^{x} \left(\frac{3 \cdot 3^{4 x}}{\left(1 - 3^{2 x}\right)^{2}} + \frac{4 \cdot 3^{2 x}}{1 - 3^{2 x}} + 1\right) \log{\left(3 \right)}^{3}}{\sqrt{1 - 3^{2 x}}}$$