The first derivative
[src]
1 2*asin(t)*sin(t)
------------------- + ----------------
________ 3
/ 2 2 cos (t)
\/ 1 - t *cos (t)
$$\frac{2 \sin{\left(t \right)} \operatorname{asin}{\left(t \right)}}{\cos^{3}{\left(t \right)}} + \frac{1}{\sqrt{1 - t^{2}} \cos^{2}{\left(t \right)}}$$
The second derivative
[src]
/ 2 \
t | 3*sin (t)| 4*sin(t)
----------- + 2*|1 + ---------|*asin(t) + ------------------
3/2 | 2 | ________
/ 2\ \ cos (t) / / 2
\1 - t / \/ 1 - t *cos(t)
------------------------------------------------------------
2
cos (t)
$$\frac{\frac{t}{\left(1 - t^{2}\right)^{\frac{3}{2}}} + 2 \left(\frac{3 \sin^{2}{\left(t \right)}}{\cos^{2}{\left(t \right)}} + 1\right) \operatorname{asin}{\left(t \right)} + \frac{4 \sin{\left(t \right)}}{\sqrt{1 - t^{2}} \cos{\left(t \right)}}}{\cos^{2}{\left(t \right)}}$$
The third derivative
[src]
2 / 2 \ / 2 \
3*t | 3*sin (t)| | 3*sin (t)|
-1 + ------- 6*|1 + ---------| 8*|2 + ---------|*asin(t)*sin(t)
2 | 2 | | 2 |
-1 + t \ cos (t) / 6*t*sin(t) \ cos (t) /
- ------------ + ----------------- + ------------------ + --------------------------------
3/2 ________ 3/2 cos(t)
/ 2\ / 2 / 2\
\1 - t / \/ 1 - t \1 - t / *cos(t)
------------------------------------------------------------------------------------------
2
cos (t)
$$\frac{\frac{6 t \sin{\left(t \right)}}{\left(1 - t^{2}\right)^{\frac{3}{2}} \cos{\left(t \right)}} + \frac{8 \left(\frac{3 \sin^{2}{\left(t \right)}}{\cos^{2}{\left(t \right)}} + 2\right) \sin{\left(t \right)} \operatorname{asin}{\left(t \right)}}{\cos{\left(t \right)}} + \frac{6 \left(\frac{3 \sin^{2}{\left(t \right)}}{\cos^{2}{\left(t \right)}} + 1\right)}{\sqrt{1 - t^{2}}} - \frac{\frac{3 t^{2}}{t^{2} - 1} - 1}{\left(1 - t^{2}\right)^{\frac{3}{2}}}}{\cos^{2}{\left(t \right)}}$$