The second derivative
[src]
2 t*acos(t) t*asin(t)
------- + ----------- - -----------
2 3/2 3/2
-1 + t / 2\ / 2\
\1 - t / \1 - t /
$$\frac{t \operatorname{acos}{\left(t \right)}}{\left(1 - t^{2}\right)^{\frac{3}{2}}} - \frac{t \operatorname{asin}{\left(t \right)}}{\left(1 - t^{2}\right)^{\frac{3}{2}}} + \frac{2}{t^{2} - 1}$$
The third derivative
[src]
/ 2 \ / 2 \
| 3*t | | 3*t |
|-1 + -------|*asin(t) |-1 + -------|*acos(t)
| 2| | 2|
6*t \ -1 + t / \ -1 + t /
- ---------- + ---------------------- - ----------------------
2 3/2 3/2
/ 2\ / 2\ / 2\
\-1 + t / \1 - t / \1 - t /
$$- \frac{6 t}{\left(t^{2} - 1\right)^{2}} - \frac{\left(\frac{3 t^{2}}{t^{2} - 1} - 1\right) \operatorname{acos}{\left(t \right)}}{\left(1 - t^{2}\right)^{\frac{3}{2}}} + \frac{\left(\frac{3 t^{2}}{t^{2} - 1} - 1\right) \operatorname{asin}{\left(t \right)}}{\left(1 - t^{2}\right)^{\frac{3}{2}}}$$