Mister Exam

Other calculators

Derivative of asin(m*x/((2*d)))

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
    /m*x\
asin|---|
    \2*d/
$$\operatorname{asin}{\left(\frac{m x}{2 d} \right)}$$
asin((m*x)/((2*d)))
The first derivative [src]
          m          
---------------------
          ___________
         /      2  2 
        /      m *x  
2*d*   /   1 - ----- 
      /            2 
    \/          4*d  
$$\frac{m}{2 d \sqrt{1 - \frac{m^{2} x^{2}}{4 d^{2}}}}$$
The second derivative [src]
           3       
        x*m        
-------------------
                3/2
     /     2  2\   
   3 |    m *x |   
8*d *|1 - -----|   
     |        2|   
     \     4*d /   
$$\frac{m^{3} x}{8 d^{3} \left(1 - \frac{m^{2} x^{2}}{4 d^{2}}\right)^{\frac{3}{2}}}$$
The third derivative [src]
   /          2  2    \
 3 |       3*m *x     |
m *|4 + --------------|
   |       /     2  2\|
   |     2 |    m *x ||
   |    d *|1 - -----||
   |       |        2||
   \       \     4*d //
-----------------------
                   3/2 
        /     2  2\    
      3 |    m *x |    
  32*d *|1 - -----|    
        |        2|    
        \     4*d /    
$$\frac{m^{3} \left(4 + \frac{3 m^{2} x^{2}}{d^{2} \left(1 - \frac{m^{2} x^{2}}{4 d^{2}}\right)}\right)}{32 d^{3} \left(1 - \frac{m^{2} x^{2}}{4 d^{2}}\right)^{\frac{3}{2}}}$$