The second derivative
[src]
/ 3/2 \
____ | 5 125*x asin(5*x)|
\/ 43 *|-------------------- + -------------- - ---------|
| ___________ 3/2 3/2 |
| ___ / 2 / 2\ 4*x |
\\/ x *\/ 1 - 25*x \1 - 25*x / /
$$\sqrt{43} \left(\frac{125 x^{\frac{3}{2}}}{\left(1 - 25 x^{2}\right)^{\frac{3}{2}}} + \frac{5}{\sqrt{x} \sqrt{1 - 25 x^{2}}} - \frac{\operatorname{asin}{\left(5 x \right)}}{4 x^{\frac{3}{2}}}\right)$$
The third derivative
[src]
/ / 2 \\
| ___ | 75*x ||
| 125*\/ x *|-1 + ----------||
| ___ | 2||
____ | 15 3*asin(5*x) 375*\/ x \ -1 + 25*x /|
\/ 43 *|- --------------------- + ----------- + ---------------- - ---------------------------|
| ___________ 5/2 3/2 3/2 |
| 3/2 / 2 8*x / 2\ / 2\ |
\ 4*x *\/ 1 - 25*x 2*\1 - 25*x / \1 - 25*x / /
$$\sqrt{43} \left(- \frac{125 \sqrt{x} \left(\frac{75 x^{2}}{25 x^{2} - 1} - 1\right)}{\left(1 - 25 x^{2}\right)^{\frac{3}{2}}} + \frac{375 \sqrt{x}}{2 \left(1 - 25 x^{2}\right)^{\frac{3}{2}}} - \frac{15}{4 x^{\frac{3}{2}} \sqrt{1 - 25 x^{2}}} + \frac{3 \operatorname{asin}{\left(5 x \right)}}{8 x^{\frac{5}{2}}}\right)$$