Mister Exam

Derivative of arccos(sqrt(tan(x)))

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
    /  ________\
acos\\/ tan(x) /
$$\operatorname{acos}{\left(\sqrt{\tan{\left(x \right)}} \right)}$$
acos(sqrt(tan(x)))
The graph
The first derivative [src]
      /       2   \      
      |1   tan (x)|      
     -|- + -------|      
      \2      2   /      
-------------------------
  ____________   ________
\/ 1 - tan(x) *\/ tan(x) 
$$- \frac{\frac{\tan^{2}{\left(x \right)}}{2} + \frac{1}{2}}{\sqrt{1 - \tan{\left(x \right)}} \sqrt{\tan{\left(x \right)}}}$$
The second derivative [src]
              /                      2                    2          \
/       2   \ |    ________   1 + tan (x)          1 + tan (x)       |
\1 + tan (x)/*|- \/ tan(x)  + ----------- - -------------------------|
              |                    3/2                       ________|
              \               4*tan   (x)   4*(1 - tan(x))*\/ tan(x) /
----------------------------------------------------------------------
                              ____________                            
                            \/ 1 - tan(x)                             
$$\frac{\left(\tan^{2}{\left(x \right)} + 1\right) \left(\frac{\tan^{2}{\left(x \right)} + 1}{4 \tan^{\frac{3}{2}}{\left(x \right)}} - \sqrt{\tan{\left(x \right)}} - \frac{\tan^{2}{\left(x \right)} + 1}{4 \left(1 - \tan{\left(x \right)}\right) \sqrt{\tan{\left(x \right)}}}\right)}{\sqrt{1 - \tan{\left(x \right)}}}$$
The third derivative [src]
              /                                              2                                                    2                          2     \
              |                       2         /       2   \        ________ /       2   \          /       2   \              /       2   \      |
/       2   \ |       3/2      1 + tan (x)    3*\1 + tan (x)/    3*\/ tan(x) *\1 + tan (x)/        3*\1 + tan (x)/              \1 + tan (x)/      |
\1 + tan (x)/*|- 2*tan   (x) + ------------ - ---------------- - -------------------------- - -------------------------- + ------------------------|
              |                    ________          5/2               2*(1 - tan(x))                       2   ________                     3/2   |
              \                2*\/ tan(x)      8*tan   (x)                                   8*(1 - tan(x)) *\/ tan(x)    4*(1 - tan(x))*tan   (x)/
----------------------------------------------------------------------------------------------------------------------------------------------------
                                                                     ____________                                                                   
                                                                   \/ 1 - tan(x)                                                                    
$$\frac{\left(\tan^{2}{\left(x \right)} + 1\right) \left(- \frac{3 \left(\tan^{2}{\left(x \right)} + 1\right)^{2}}{8 \tan^{\frac{5}{2}}{\left(x \right)}} + \frac{\tan^{2}{\left(x \right)} + 1}{2 \sqrt{\tan{\left(x \right)}}} - 2 \tan^{\frac{3}{2}}{\left(x \right)} + \frac{\left(\tan^{2}{\left(x \right)} + 1\right)^{2}}{4 \left(1 - \tan{\left(x \right)}\right) \tan^{\frac{3}{2}}{\left(x \right)}} - \frac{3 \left(\tan^{2}{\left(x \right)} + 1\right) \sqrt{\tan{\left(x \right)}}}{2 \left(1 - \tan{\left(x \right)}\right)} - \frac{3 \left(\tan^{2}{\left(x \right)} + 1\right)^{2}}{8 \left(1 - \tan{\left(x \right)}\right)^{2} \sqrt{\tan{\left(x \right)}}}\right)}{\sqrt{1 - \tan{\left(x \right)}}}$$