Mister Exam

Other calculators


(arccos(5x))/(ln(4*x))

Derivative of (arccos(5x))/(ln(4*x))

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
acos(5*x)
---------
 log(4*x)
$$\frac{\operatorname{acos}{\left(5 x \right)}}{\log{\left(4 x \right)}}$$
d /acos(5*x)\
--|---------|
dx\ log(4*x)/
$$\frac{d}{d x} \frac{\operatorname{acos}{\left(5 x \right)}}{\log{\left(4 x \right)}}$$
The graph
The first derivative [src]
             5               acos(5*x) 
- ----------------------- - -----------
     ___________                 2     
    /         2             x*log (4*x)
  \/  1 - 25*x  *log(4*x)              
$$- \frac{5}{\sqrt{1 - 25 x^{2}} \log{\left(4 x \right)}} - \frac{\operatorname{acos}{\left(5 x \right)}}{x \log{\left(4 x \right)}^{2}}$$
The second derivative [src]
                                               /       2    \          
                                               |1 + --------|*acos(5*x)
      125*x                    10              \    log(4*x)/          
- -------------- + ------------------------- + ------------------------
             3/2        ___________                   2                
  /        2\          /         2                   x *log(4*x)       
  \1 - 25*x /      x*\/  1 - 25*x  *log(4*x)                           
-----------------------------------------------------------------------
                                log(4*x)                               
$$\frac{- \frac{125 x}{\left(1 - 25 x^{2}\right)^{\frac{3}{2}}} + \frac{10}{x \sqrt{1 - 25 x^{2}} \log{\left(4 x \right)}} + \frac{\left(1 + \frac{2}{\log{\left(4 x \right)}}\right) \operatorname{acos}{\left(5 x \right)}}{x^{2} \log{\left(4 x \right)}}}{\log{\left(4 x \right)}}$$
The third derivative [src]
    /           2   \                                                                                                
    |       75*x    |                                                            /       3           3    \          
125*|-1 + ----------|                                    /       2    \        2*|1 + -------- + ---------|*acos(5*x)
    |              2|                                 15*|1 + --------|          |    log(4*x)      2     |          
    \     -1 + 25*x /             375                    \    log(4*x)/          \               log (4*x)/          
--------------------- + ----------------------- - -------------------------- - --------------------------------------
               3/2                 3/2                  ___________                          3                       
    /        2\         /        2\                2   /         2                          x *log(4*x)              
    \1 - 25*x /         \1 - 25*x /   *log(4*x)   x *\/  1 - 25*x  *log(4*x)                                         
---------------------------------------------------------------------------------------------------------------------
                                                       log(4*x)                                                      
$$\frac{\frac{125 \cdot \left(\frac{75 x^{2}}{25 x^{2} - 1} - 1\right)}{\left(1 - 25 x^{2}\right)^{\frac{3}{2}}} + \frac{375}{\left(1 - 25 x^{2}\right)^{\frac{3}{2}} \log{\left(4 x \right)}} - \frac{15 \cdot \left(1 + \frac{2}{\log{\left(4 x \right)}}\right)}{x^{2} \sqrt{1 - 25 x^{2}} \log{\left(4 x \right)}} - \frac{2 \cdot \left(1 + \frac{3}{\log{\left(4 x \right)}} + \frac{3}{\log{\left(4 x \right)}^{2}}\right) \operatorname{acos}{\left(5 x \right)}}{x^{3} \log{\left(4 x \right)}}}{\log{\left(4 x \right)}}$$
The graph
Derivative of (arccos(5x))/(ln(4*x))