Mister Exam

Derivative of a^tant

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
 tan(t)
a      
$$a^{\tan{\left(t \right)}}$$
d / tan(t)\
--\a      /
dt         
$$\frac{\partial}{\partial t} a^{\tan{\left(t \right)}}$$
Detail solution
  1. Let .

  2. Then, apply the chain rule. Multiply by :

    1. Rewrite the function to be differentiated:

    2. Apply the quotient rule, which is:

      and .

      To find :

      1. The derivative of sine is cosine:

      To find :

      1. The derivative of cosine is negative sine:

      Now plug in to the quotient rule:

    The result of the chain rule is:

  3. Now simplify:


The answer is:

The first derivative [src]
 tan(t) /       2   \       
a      *\1 + tan (t)/*log(a)
$$a^{\tan{\left(t \right)}} \left(\tan^{2}{\left(t \right)} + 1\right) \log{\left(a \right)}$$
The second derivative [src]
 tan(t) /       2   \ /           /       2   \       \       
a      *\1 + tan (t)/*\2*tan(t) + \1 + tan (t)/*log(a)/*log(a)
$$a^{\tan{\left(t \right)}} \left(\left(\tan^{2}{\left(t \right)} + 1\right) \log{\left(a \right)} + 2 \tan{\left(t \right)}\right) \left(\tan^{2}{\left(t \right)} + 1\right) \log{\left(a \right)}$$
The third derivative [src]
                      /                             2                                        \       
 tan(t) /       2   \ |         2      /       2   \     2        /       2   \              |       
a      *\1 + tan (t)/*\2 + 6*tan (t) + \1 + tan (t)/ *log (a) + 6*\1 + tan (t)/*log(a)*tan(t)/*log(a)
$$a^{\tan{\left(t \right)}} \left(\tan^{2}{\left(t \right)} + 1\right) \left(\left(\tan^{2}{\left(t \right)} + 1\right)^{2} \log{\left(a \right)}^{2} + 6 \left(\tan^{2}{\left(t \right)} + 1\right) \log{\left(a \right)} \tan{\left(t \right)} + 6 \tan^{2}{\left(t \right)} + 2\right) \log{\left(a \right)}$$