Mister Exam

Other calculators

Derivative of А*(x/3)*sin(x/3)

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  x    /x\
a*-*sin|-|
  3    \3/
$$a \frac{x}{3} \sin{\left(\frac{x}{3} \right)}$$
(a*(x/3))*sin(x/3)
Detail solution
  1. Apply the quotient rule, which is:

    and .

    To find :

    1. The derivative of a constant times a function is the constant times the derivative of the function.

      1. Apply the product rule:

        ; to find :

        1. Apply the power rule: goes to

        ; to find :

        1. Let .

        2. The derivative of sine is cosine:

        3. Then, apply the chain rule. Multiply by :

          1. The derivative of a constant times a function is the constant times the derivative of the function.

            1. Apply the power rule: goes to

            So, the result is:

          The result of the chain rule is:

        The result is:

      So, the result is:

    To find :

    1. The derivative of the constant is zero.

    Now plug in to the quotient rule:

  2. Now simplify:


The answer is:

The first derivative [src]
     /x\          /x\
a*sin|-|   a*x*cos|-|
     \3/          \3/
-------- + ----------
   3           9     
$$\frac{a x \cos{\left(\frac{x}{3} \right)}}{9} + \frac{a \sin{\left(\frac{x}{3} \right)}}{3}$$
The second derivative [src]
  /     /x\        /x\\
a*|6*cos|-| - x*sin|-||
  \     \3/        \3//
-----------------------
           27          
$$\frac{a \left(- x \sin{\left(\frac{x}{3} \right)} + 6 \cos{\left(\frac{x}{3} \right)}\right)}{27}$$
The third derivative [src]
   /     /x\        /x\\ 
-a*|9*sin|-| + x*cos|-|| 
   \     \3/        \3// 
-------------------------
            81           
$$- \frac{a \left(x \cos{\left(\frac{x}{3} \right)} + 9 \sin{\left(\frac{x}{3} \right)}\right)}{81}$$