Mister Exam

Other calculators

Derivative of a*sin(t)^2

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
     2   
a*sin (t)
asin2(t)a \sin^{2}{\left(t \right)}
a*sin(t)^2
Detail solution
  1. The derivative of a constant times a function is the constant times the derivative of the function.

    1. Let u=sin(t)u = \sin{\left(t \right)}.

    2. Apply the power rule: u2u^{2} goes to 2u2 u

    3. Then, apply the chain rule. Multiply by ddtsin(t)\frac{d}{d t} \sin{\left(t \right)}:

      1. The derivative of sine is cosine:

        ddtsin(t)=cos(t)\frac{d}{d t} \sin{\left(t \right)} = \cos{\left(t \right)}

      The result of the chain rule is:

      2sin(t)cos(t)2 \sin{\left(t \right)} \cos{\left(t \right)}

    So, the result is: 2asin(t)cos(t)2 a \sin{\left(t \right)} \cos{\left(t \right)}

  2. Now simplify:

    asin(2t)a \sin{\left(2 t \right)}


The answer is:

asin(2t)a \sin{\left(2 t \right)}

The first derivative [src]
2*a*cos(t)*sin(t)
2asin(t)cos(t)2 a \sin{\left(t \right)} \cos{\left(t \right)}
The second derivative [src]
     /   2         2   \
-2*a*\sin (t) - cos (t)/
2a(sin2(t)cos2(t))- 2 a \left(\sin^{2}{\left(t \right)} - \cos^{2}{\left(t \right)}\right)
The third derivative [src]
-8*a*cos(t)*sin(t)
8asin(t)cos(t)- 8 a \sin{\left(t \right)} \cos{\left(t \right)}